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RÉSUMÉ. Résumé: Dans ce papier nous nous intéressons à l’étude de la structure des graphes qui excluant K2,r

comme mineur. Nous montrons que tout graphe sans mineur K2,4 admet deux sommets dont la suppression rend le
graphe planaire-extérieur. Ces sommets peuvent extraites en temps linéaire. Si le graphe est planaire, un sommet suffit à
le rendre planaire-extérieur. Une des conséquence de ce résultat est que les graphes sans mineur K2,4 sont de largeur
arborescente au plus 4, et au plus 3 pour le cas planaire. Ces bornes sont optimale à cause de K5 et de K4. Nous
mettons aussi en évidence la relation entre la taille de la grille de la plus petite grilles permettant de dessiner un graphe
H et le graphe excluant H comme mineur. Une conséquence de ce résultats est que la largeur arborescente des graphes
sans mineur K2,r est O(

√
r ) et r1/2+o(1) s’il exclue un graphe planair-exterieur à r sommets.

ABSTRACT. Abtract: This paper concerns the structure of the graphs excluding a K2,r-minor. We prove that every
K2,4-minor free graph contains two vertices whose removal leaves the graph outerplanar. Such vertices can be founded
in linear time. If the graph is planar the removal of one vertex suffices to leave the graph outerplanar. It follows that the
treewidth of K2,4-minor free graph is at most 4, and at most 3 for the planar case. These bounds are optimal because of
K5 and K4. We also establish a connection between the size of a poly-line grid drawing of a given planar graph H and
the treewidth of any planar H-minor free graph. A consequence is that the treewidth of planar K2,r-minor free graphs is
O(

√
r ), and r1/2+o(1) if one excludes any r-vertex outerplanar graph.

MOTS-CLÉS : Mots clefs: graphe sans mineur, largeur-arborescente, graphes planaires
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1. Introduction

Graph decomposition plays an important role in graph algorithmic. Tree-decompositions, introduced
in [1] and rediscovered by[2], is a very popular one. They are central in the Fixed Parameterized Tractable
(FPT) Theory [3] whose consequences for practical algorithms are effective improvements on the running
time [4, 5, 6]. Arbitrary graphs have no fine structure in general, however graphs excluding some minors1

have one.
One can say a lot about the structure if the excluded minor is small. A graph excluding aK3-minor is a

forest, and a graph excludingK4-minor has treewidth at most two. Roughly speaking a tree-decomposition
is a collection of subgraphs, called bags, that cover the graph in a tree-like manner (see [7] for precise
definitions). Treewidth-k graphs are graphs having a tree-decomposition into bags of at mostk + 1 ver-
tices. The structure ofK5-minor free graphs, given by Wagner [8], can be expressed in term of tree-
decomposition into bags composed of either of planar graphs, or of V8-graphs, a cubic graph on eight
vertices. The treewidth of such graphs is unbounded in general.

Actually, Roberston and Seymour [9] showed that every graph excluding a fixed minorH has a tree-
decomposition into bags almost-embeddable on a surface on which H cannot be embedded. The above
results about graphs excludingK3, K4, or K5 is therefore captured by this general result. However, the
exact structure cannot be derived since extremely large constants, depending onH, are involved. In fact,
no upper bounds on these constants is known.

Nevertheless, such general tree-decompositions have leadto important algorithmic applications.
Among them we just point [10] for additively approximating the chromatic number of a graph, and [11]
for shortest-path decomposition and its applications to distance oracles and routing schemes.

Determining the fine structure of minor free graphs becomes much more complicated when the exclud-
ing graph has more than five vertices. The structure ofKr-minor free graphs is still open forr > 5, and
we refer to [12] for a further discussions. Among simple open problems about K6-minor free graphs, let
us mention the maximum arboricity (conjectured to be3), and the Jørgensen’s conjecture in relation with
the Hadwiger’s conjecture :

Conjecture 1 (Jørgensen, 1994)Every6-connectedK6-minor free graphG has a vertexu such thatG \
{u} is planar.

1.1. Our Results

We show that every2-connectedK2,4-minor free graphG has two verticesu, v such thatG \ {u, v} is
outerplanar. More precisely,

Theorem 1 In every2-connected graph withn vertices, we can inO(n) time either extract aK2,4-minor,
or find two vertices (one if the graph is planar) whose removalleaves the graph outerplanar.

We may naturally wonder whether Theorem1 can be extended toK2,r with r > 4. As we will see
in Section3, there areK2,5-minor free graphs withn vertices, that are planar and2-connected, such that
the removal of at leastΩ(n) vertices is required to make the graph outerplanar. [A RING OF K4 SUF-
FICES ? ? ?] So the only way to extend this theorem tor > 4 is to assume higher connectivity.

An immediate corollary of Theorem1 is thatK2,4-minor free graphs have treewidth at most4, and
at most3 if the graph is planar, and the corresponding tree-decomposition can be constructed in linear
time. Indeed, aK2,4-minor of a graphG must wholly appear in a2-connected component ofG, and the
treewidth ofG is the maximum over the treewidth of its2-connected components. These two bounds are

1. A minor of a graph G is a subgraph of a graph obtained from G by edge contraction.



best possible because ofK5, and ofK4 for planar graphs. It improves the treewidth upper bounds of6
given by Bodlaender et al. [13], and Thilikos [14] for the planar case.

The treewidth of planarK2,r-minor free graphs is later discussed in Section4. We prove a bound of
O(

√
r ), an asymptotically improvement upon ther + 2 upper bound of [14]. Actually, we establish a

connection between the treewidth of aH-minor free graphs and the ability of poly-line grid2 drawing of
H. More precisely, we show :

Theorem 2 The treewidth of every planar graph excluding a graph havinga poly-linep× q-grid drawing
is O(p3/2√q ).

BecauseK2,r can be drawn on a3 × r grid (see Fig.4), it follows that the treewidth of planarK2,r-
minor free graphs isO(

√
r ). This later bound is asymptotically optimal because of thek × k grid that

has treewidthk and clearly excludesK2,k2 . We derive similar bounds on the treewidth of planar graphs
excluding a tree of a given pathwidth or an outerplanar graph(see Section4).

1.2. Related Works

The study of graphs excluding a given graph as a minor has longhistory. The structure of graphs
excluding a minor is known forK5 andK3,3 [8], the octahedron plus an edge and the3-cube [15, 16] if the
graph is enough connected. New characterizations of graphsexcluding as a minor aK5, or an octahedron
has been given in [17]. The treewidth of graphs excluding as minor anr-vertex planar graph is2O(r5) [18],
and is conjectured to ber2+o(1). It reduces toO(r) for excluding (as minor) aK2,r [13], a forest [19] or a
cycle [20] on r vertices,O(r2) for excludingr disjoint triangles [21] or a r-prism3 graph [22], andO(r3)
for excluding simultaneously a 2-row grid and a circus graph4 [23], see also [24]. More specifically, the
treewidth of graphs excluding a3 × 3-grid is at most7 which is optimal because ofK8 [25].

There are also works that study graphs containing fixed minors. Among them, [26] have showed that,
for every integerss, r, there is a numberN(s, r) such that every312 (k + 1)-connected graph with at
leastN(s, r) vertices contains aKs,r-minors. Recently, several authors have announced that anylarge
5-connected graph contains aK2,k-minor, and similar conditions forcingK3,r andK4,r minors.

The maximum density of aK2,r-minor free graph has been determined by Chudnovsky, Reed and
Seymour [27]. More precisely, for everyr > 1, the densestK2,r-minor free graph withn vertices has
1
2 (n − 1)(r + 1) edges. The highest density ofKs,r-minor free graphs is studied in [28], but only partial
answers are known whenevers > 2.

Motivated by routing problems, Bodlaender et al. [13] have studied the treewidth of graphs excluding a
K2,r-minor. They show an upper bound of2r − 2, that reduces tor + 2 if the graph is planar [14].

The problem of determining whetherH is a minor ofG is computationally difficult for generalH (e.g.
if H is a cycle of|V (G)| vertices). However the problem is FPT inH. There is a cubic time algorithm (for
fixed H), and a linear time algorithm ifH = K5 of H is planar (cf. [29]). In particular this is linear for
H = K2,r and fixedr.

2. The Structure of Graphs Excluding K2,4

It is worth to say that the family ofK2,4-minor free graphs includes non-planar graphs,K5 andK3,3

are such examples. In order to prove Theorem1 we combine the following two intermediate results that
basically distinguish the planar and non-planar case.

2. A p × q-grid is a mesh of p rows and q columns.
3. The product of a r-vertex cycle and a K2. In particular, graphs with no 12-prism minor have treewidth at most 7262

and exclude a 4 × 4-grid, a huge improvement upon the 220r5

upper bound for r × r-grid [18] which is 220,480 for r = 4.
4. A minor of a 3-row grid obtained by contracting the first row and removing all edges of the second row.



Lemma 1 If G is a planar2-connected graph, then in linear time we can either extract from G a K2,4-
minor, or find a vertex whose removal leavesG outerplanar.

Lemma 2 If G is a non-planar2-connected graph withn vertices, then inO(n) time we can either extract
a K2,4-minor, or find a vertex whose removal leavesG planar.

2.1. Preliminaries

Consider a plane graphG, that is an embedding of graphG in the the planeR2. The connected subsets
of R

2 \G are thefacesof G, and each one, except the infinite one a.k.a. the outerface, is homeomorphic to
an open disc. An embedding isouterplaneif all the vertices lie on the border of the outerface.

For a pathM of G, we denote byM [u, v] the subpath ofM going from vertexu to vertexv. We set
M [u, v[= M [u, v] \ {v}, M ]u, v] = M [u, v] \ {u}, andM ]u, v[= M [u, v] \ {u, v}. The length|M | of
M is its number of edges. Notations extend to plane cycles as follows. For a cycleC of G, we denote by
C+[u, v] the path going clockwise fromu to v alongC, and we define similarly the variantsC+[u, v[,
C+]u, v], andC+]u, v[.

For a subgraphH of G, denote by IN(H) ⊂ R
2 the subsetR2 \ H where the outerface is excluded. If

H is a simple cycle, then IN(H) consists of one region (or face ofH) whose border isH. By extension,
IN(H) denotes also the subgraph ofG induced by the vertices that belong to IN(H). An attachmentof a
connected componentX of G \ H is a vertex ofH adjacent to a vertex ofX.

Whenever we extract a minorK from G, we actually construct amodelof K defined as follows : with
each vertexu of K we associate asuper-node, that is a connected subgraph ofG ; and, with each edge
(u, v) of K we associate asuper-edge, a path connecting the super-nodes ofu to of v. Super-nodes are
pairwise disjoint and super-edges can only meet at their super-node endpoints. ForK = K2,r we denote
by A andB the super-nodes of the two degree-r vertices ofK2,r.

2.2. Proof of Lemma 1 : Planar Case

An LMR-embeddingof a planar graphG is a plane embedding ofG with three distinguished paths,
namelyL,M,R (for left, middle, and right), sharing only their extremities and such that :

1) L ∪ R is the border of the outerface ofG ;
2) IN(L ∪ M) and IN(M ∪ R) contain no vertices ;
3) IN(M ∪ R) contains no edges with both endpoints inM ;
4) M has length at least two.

Properties 1 and 2 of LMR-embedding imply that the pathsL,M,R span the vertices of the graph. See
Fig. 1(a) for an example.

Lemma1 is proved thanks to the following two lemmas.

Lemma 3 Given an LMR-embedding ofG, we can in linear time either extract aK2,4-minor, or find a
vertex whose removal leavesG outerplane.

Proof. Let u, v be the common vertices ofL,M,R. Observe that, from the definition of LMR-embedding,
G\ R]u, v[ is outerplane. In order to prove the lemma, we apply the following rules whenever it is possible.

2.2.0.1. Rule 1 :

If I N(M ∪ R) has no edge connecting a vertex ofM and ofR. Then, removingu makes the new
outerface bordering all the vertices ofM . Since all the vertices ofL∪R are on the border of the outerface,
the embeddingG \ {u} is outerplane.
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Figure 1 – An LMR-embedding (a). AK2,4-minor for the proof of Lemma3(b).
2.2.0.2. Rule 2 :

If there is a vertexw of R such that all the edges of IN(M ∪ R) incident to a vertex ofM are incident
to w. Then, removingw makesG \ {w} outerplane.

2.2.0.3. Rule 3 :

If there is a vertexw adjacent tou in M that is also adjacent to a vertexx of R. Then, we construct a
new LMR-embedding and updateL,M,R as follows :

– L becomesL ∪ R[u, x] ;
– M becomesM [v, w] ∪ {wx} ; and
– R becomesR[x, v].

We apply also this construction, by exchanging the role ofu andv, if there is a vertexw adjacent tov in
M that is also adjacent to a vertexx of R. Note that in both cases,|R| decreases by at least one vertex.

If none of the rules 1, 2, or 3 applies, thenG contains aK2,4 minor. Indeed, Rule 3 does not apply,
so vertexu has a neighborwu in M without any neighbor inR. The same holds for vertexv that has
a neighborwv in M without any neighbor inR. Because of Rule 1,M ]wu, wv[ contains at least a one
vertex which has a neighbor inR. By Rule 2, all the edges fromM (and so fromM ]wu, wv[) to R are not
incident to the same vertex ofR. Thus, there are two different verticesxu andxv in R with a neighbor in
M ]wu, wv[.

Therefore, we can construct aK2,4-minor, by defining the super-nodesA = M ]wu, wv[ and B =
L[u, v], as shown on Fig.1(b)).

If we are not in the previous case where we have constructed aK2,4-minor, then we must end by Rule 1
or Rule 2, and so find a vertex whose removal makes the embedding outerplane.

To conclude, we observe that this can be done overall in linear time, by first applying while possible
Rule 3. This can be done by visiting a constant time each edge of the graph. Then, applying Rule 1 and
Rule 2 takes a linear time. �

Lemma 4 Every2-connected planar graph that is not a cycle has an LMR-embedding, or contains aK2,4-
minor. Moreover, such an embedding or such a minor can be constructed in linear time.



Due to space contraint, the long and technical proof of Lemma4 has been removed.

Proof of Lemma 1. Clearly, if G is a cycle (that one can check in linear time), then the removal of any
vertex leavesG outerplanar. IfG is planar but not a cycle, we can apply Lemma4. In linear time, we find
either an LMR-embedding forG, or extract aK2,4-minor. If we have obtained an LMR-embedding forG,
we can apply Lemma3 and, in linear time, either find a vertex whose removal leavesG outerplanar, or
extract aK2,4-minor. This completes the proof of the lemma. �

2.3. Proof of Lemma 2 : Non-Planar Case

In order to proof Lemma2, we need of the following key lemma.

Lemma 5 Let H be a subdivision ofK3,3 that is a subgraph of a2-connected graphG. The attachments
of any connected component ofG \ H induced an edge ofH, or one can find in linear time aK2,4-minor
in G.

Proof. The subgraphH is composed of two sets of degree-3 vertices denoted byI andJ , and of nine paths
denoted byP [i, j] linking any vertexi ∈ I to any vertexj ∈ J .

Consider a connected componentX of G \ H, and letA be the set of its attachments. We first observe
that|A| > 1 otherwise the singletonA would be a cut-vertex ofG : impossibleG is 2-connected.

So consider two attachmentsu, v ∈ A. The remaining of the proof consists to show that ifu andv are
at distance at least two inH, then one can find in linear time aK2,4-minor in G. Say in other words, ifG
is K2,4-minor free, then the attachments ofX form exactly one edge ofH.

Let assume thatu ∈ P [iu, ju] andv ∈ P [iv, jv] for someiu, iv ∈ I andju, jv ∈ J , and thatu, v are
at distance at least two inH. Among the four lengths|P [iu, u]|, |P [u, ju]|, |P [iv, v]|, and|P [v, jv]|, we
will assume that|P [iu, u]| is the smallest one. This can be done by possibly exchanging firstu andv if the
minimum is attained byv, and then by possibly exchangingi’s andj’s if |P [iu, u]| > |P [u, ju]|. Two cases
occur :

2.3.0.4. Case 1 :

iu = iv andju = jv.
Both verticesu, v belong to the pathP = P [iu, jv]. Note also that going fromiu to jv on P we must

encounteru beforev by minimality of |P |. We setA = P [iu, u] andB = P [v, jv] for the two nodes of the
K2,4-minor. Betweeniu andjv in there are inH two disjoint paths of length at least two that uses none of
the edges ofP . The subpathP [u, v] is of length at least two sinceu, v are at distance at least two inH.
And finally, there is a fourth path of length at least two through componentX, completing the construction
of theK2,4-minor.

2.3.0.5. Case 2 :

iu 6= iv or ju 6= jv.
We present the proof only foriu 6= iv, the proof is similar ifju 6= jv.
If v = jv, thenu = iu by minimality of |P [iu, u]|. In particular, both verticesu, v belong to the path

P [iu, jv], and we can conclude by Case 1. So we can assume that the subpath P [v, jv] contains at least
one edge ofH. Note also that the subpathP [u, ju] contains at least one edge as well by minimality of
|P [iu, u]|.

We setA = P [iu, u] andB = P [iv, v] for the degree-4 super-nodes of theK2,4-minor. From the above
discussion, the subpathsP [u, ju] andP [v, jv] contains at one edge, and therefore contractingA andB in
H still result in a subdivision ofK3,3, sayH ′. BetweenA andB in H ′ we have three disjoint paths of



length at least two, so inG. These paths are disjoint of the fourth path through component X, which is of
length at least two too, completing the construction of theK2,4-minor.

Clearly, from the above case analysis, theK2,4-minor can be extracted in linear time. �

Proof of Lemma 2. We need to show that eitherG, which is non-planar and2-connected, contains aK2,4-
minor, or contains a vertexv0 such thatG \ {v0} is planar. For that we will analyze a simple procedure
called FIND(G) that either returns aK2,4-minor or such a vertexv0. An O(n) time implementation of this
procedure is given after the proof of its correctness.

2.3.0.6. Procedure FIND(G) :

1. If n 6 5, then return asv0 any vertex ofG.
2. Construct aK5 or K3,3 subdivisionH of G.
3. If H is a subdivision ofK5, then return aK2,4-minor constructed fromH.
4. WhileV (H) 6= V (G) :

4a. Choose any connected componentX of G \ H.
4b. Apply Lemma5 to G andH. If a K2,4-minor is founded, return it. Otherwise replace inH the edge

{u, v} induced by the attachments ofX by a path fromu to v throughX.
5. Letv0 be any degree-3 vertex ofH. If G \ {v0} is planar, returnv0.
6. Construct aK5 or K3,3 subdivisionH ′ of G \ {v0}.
7. If H ′ is a subdivision ofK5, then return aK2,4-minor constructed fromH ′.
8. Return theK2,4-minor constructed whenever applying Lemma5 to G andH ′.

2.3.0.7. Correctness.

If we end at Step 1, thenG \ {v0} has at most4 vertices, and thus is planar. So Step 1 is correct.
As G is not planar, from the Kuratowski’s criterion [30, 31], G must contain a subgraphhomeomorphic

to eitherK5 or K3,3, that is a subdivision ofK5 or of K3,3. Such a subgraphH at Step 2 can be constructed
in O(n) time [32, 33]. If H is a subdivision ofK5 (Step 3), we first extend it to a proper subdivisionH̃ of
K5, i.e., a subdivisionH̃ 6= K5. AssumeH = K5, otherwise we directly set̃H = H. Note thatG 6= H
sincen > 5, soG \ H contains at least one vertex. SinceG is 2-connected, there must exists two vertices
of H connected by a path inG \ E(H). This path can be constructed by testing connectivity between the
10 pairs of vertices ofH. This path andH form a proper subdivisioñH of K5. Now we construct aK2,4-
minor in H̃, i.e., a model, as follows. LetX be the set of the five degree-4 vertices inH (corresponding to
vertices ofK5). SinceH̃ is a proper subdivision ofK5, there existsa, b ∈ X connected inH̃ by a pathP
of length at least two. We setA = {a} andB = {b}. In H̃, betweena andb, there are3 paths, each one
through a distinct vertex ofX \{a, b}. These paths are of length at least two, pairwise disjoint, and disjoint
from P too. PathP is the fourth one. This completes the construction of theK2,4-minor, and proves the
correctness of Step 3. Clearly, the above construction can be done in time linear in the size of̃H, which is
O(n).

We are left with the case whereH is a subdivision ofK3,3 in Step 4. We observe that, if we do not
end with aK2,4-minor at Step 4b, then the number of vertices ofH increases by at least one (one edge is
replaced by a path of length at least two throughX). It turns out that either we end at Step 4b and return a
K2,4-minor, or we are left at Step 5 with a spanning subgraphH which is a subdivision ofK3,3.

Let G′ = G \ {v0}, wherev0 is a degree-3 vertex ofH. Assume thatG′ is non-planar, i.e., we did not
end at Step 5. Step 6 and 7 are correct as they are the same as Step 2 and 3 by replacingH by H ′ (note
thatH ′ 6= G). At Step 8 we can apply Lemma5 to G andH ′ becauseG is 2-connected. We claim that the
application of this lemma returns aK2,4-minor ofG.



Consider the connected componentX0 of G \H ′ containingv0. If we do not return aK2,4-minor, then
the attachmentsu, v of X0 induced an edge inH ′. In particular{u, v} disconnectsG into X0 ∋ v0 and
another component, sayY , containing the other vertices ofH ′ (there are at least four such vertices). It
follows that{u, v} is av0-separator inG. However, inH, there is a path fromv0 to Y . So{u, v} is not a
v0-separator inH and thus not inG as well : a contradiction. So Step 8 is correct, completing the proof of
the correctness of Procedure FIND(G).

2.3.0.8. An O(n) time algorithm.

Procedure FIND(G) cannot be directly used in order to get anO(n) time complexity algorithm, and
this for at least two reasons. First, the non-planar input graphG may havem = Ω(n2) edges. Secondly,
the while-loop (Step 4) may requireΘ(n) loops, each one requiringΘ(m) time.

Using the bound of [27], we know that ifG has more than(n−1)(r +1)/2 = 2.5n−O(1) edges, then
G must contain aK2,4 minor. However, it does not imply that Procedure FIND(G) returns such a minor.
This is due to the fact that this procedure could instead find avertexv (of high degree) so thatG \ {v} is
planar, despiteG has> 2.5n edges.

However, ifG has at least4n − 6 edges, then the application of FIND(G) necessarily returns aK2,4-
minor. This is becauseG\{v}, for any vertexv, cannot be planar :G\{v} contains at least4n−6−(n−1) =
3n − 5 edges. In other words, ifG has too many edges, we can concentrate our attention to any subgraph
of G with 4n − 6 edges, and apply on it a fast implementation of FIND. The subgraph extraction can be
done inO(n) time by selecting its4n − 6 first edges. So we can safely assume thatG hasO(n) edges.

In the proof of the correctness of FIND, we have seen that each steps, but Step 4, takes a linear time,so
O(n) time. In Step 4b, it takesO(n) if a K2,4-minor is constructed. Otherwise, by the2-connectivity of
G, a simple DFS from vertices ofG[X ∪ {u, v}] will find out a path fromu to v in time proportional to
the length of the path. In other words, each edge is visitedO(1) time, and so the while-loop has total cost
O(n). This completes the proof of Lemma2. �

3. On Generalizing Theorem 1

The Jørgensen’s conjecture states that every6-connectedK6-minor free graph has a vertex whose re-
moval leaves the graph planar. The conjecture implies the Hadwiger’s conjecture forr = 6, about(r − 1)-
colorability ofKr-minor free graphs. Actually, Robin Thomas proposed the following generalization :

Conjecture 2 (R. Thomas) For eachr > 5, there is a constantg(r) such that ifG is r-connected with at
leastg(r) vertices, then eitherG has aKr-minor or G has a setX of r − 5 vertices such thatG \ X is
planar.

Note that the condition ong(r) is required as there are graphs withΩ(r
√

log r · n) edges [34, ?] that
areKr-minor free, and so that they cannot haveO(n) edges like any planar graph by the removal ofO(r)
vertices. Sog(r) = Ω(r

√
log r ).

In the light of our result, we propose the following conjecture :

Conjecture 3 For eachr > 2, there is a constantf(r) such that ifG is f(r)-connected, then eitherG has
a K2,r-minor orG has a setX of r − 2 vertices such thatG \ X is outerplanar.

The condition on the minimum number of vertices is not required in this latter conjecture sinceK2,r-
minor free graphs have no more thanO(rn) edges [27]. We show (see [35] for a proof) :

Proposition 1 Conjecture3 is true forr = 2, 3, 4 and withf(2) = 0, andf(3) = f(4) = 2.



We have proved the first values ofr for Conjecture3 with f(3) = f(4) = 2. Note that iff(r) < 2,
then, for any value ofr > 3, the conjecture becomes wrong by considering, for instance, a chain ofKr+1.
So, the valuef(r) given in Proposition1 is the lowest possible one for eachr ∈ {2, 3, 4}.

We are unable to prove the conjecture forr = 5. However, if it is true, we must havef(5) > 3 as shown
by the next result (see [35] for its proof).

Theorem 3 For every integerk > 0, there is a2-connectedK2,5-minor free graph that requires the
removal of at leastk vertices to leave the graph outerplanar. Moreover this graph is planar and has4k +4
vertices.

4. Treewidth of Minor Free Planar Graphs

Bounding the treewidth of a graph by a function of a minor it excludes is one of the most surprising
property of the Graph Minor Theory. In a seminal paper, Robertson et al. [18], have showed that the
treewidth of a graph is bounded if the graph excludes a finite planar minor.

We investigate this question for planar graphs. It is known [18] that the treewidth of a planar graph
excluding ar-vertex planar as a minor isO(r). This result is prove by combining the following two results:

Lemma 6 ([18])

(i) If G is planar and excludes anr × r-grid minor, then its treewidth is at most6r − 5.
(ii) If H is a r-vertex planar graph, then it is a minor of a(14r − 24) × (14r − 24)-grid.

So, if a planar graphG excludes a planar graphH as minor, then by (ii)G excludes a14r × 14r-grid,
and by (i) the treewidth ofG is < 84r. This bound cannot be asymptotically improved in general asthere
arer-vertex planar graphsH that are not minor of ther × r grid which has treewidthr. For instance,
considerH = Cr the pathwidth-3 graph obtained from Cartesian product of aK3 and ar-vertex path (it
can be drawn asr nested triangles). However, there is hope to improved this linear bound if we restrict the
family of excluding minors.

More formally, we are looking for suitable graph familiesF and functionst such that the treewidth
of every planar graph excluding anr-vertex graph minor ofF is at mostt(r). Note thatCr ∈ F forces
t(r) > r.

We will determine a large familyF for which t(r) = O(
√

r ), namely the family of all graphs having a
poly-lineO(1) × r-grid drawing.

A graphH has a poly-linep× q-grid drawing ifH has a plane drawing such that vertices are plot at the
vertices of thep × q grid, and edges are contiguous sequences of segments, each segment being a straight-
line between two vertices of thep × q grid (see [36] for a wide overview). The drawing isstraight-lineif
each edge consists of one segment only.

Due to space contraint, the proof of the next result is removed (see [35]).

Theorem 4 The treewidth of every planar graph excluding a graph havinga poly-linep× q-grid drawing
is O(p3/2√q ).

As depict on the above figure,K2,r has a straight-line3 × r-grid drawing. Hence,



Corollary 1 The treewidth of every planarK2,r-minor free graphs isO(
√

r ).

It is maybe worth to mention that the family of graphs having astraight-linep × q-grid drawing is not
closed under minor taking, for eachp > 3 (see [37]), whereas the family of pathwidth-p graphs is. In [37],
it is also proved that the pathwidth is a lower bound on the number of rows in any grid drawing of a tree.
Connections between straight-line 3D-grid drawing and Minor Graph Theory are given [38].

The useful Theorem4 allow us the plug results from literature of Graph Drawing Theory. Theorem4
applies in particular tor-vertex trees. They have straight-line(4+log2 r)×r-grid drawing (cf. [36, 39]), and
more generally, trees of pathwidthk have straight-line(2k−1)×r-grid drawings [40]. Recently, Biedl [41]
has showed thatr-vertex outerplanar graph has poly-lineO(log r) × O(r)-grid drawing. Therefore,

Corollary 2 The treewidth of every planarH-minor free graph has treewidth :

– O(k3/2
√

r ) if H is anr-vertex tree of pathwidthk ; and
– O(

√
r log3/2 r ) if H is anr-vertex outerplanar graph.
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