Rubrique

modeling and simulation

Freshness-Aware Metadata Management: Performance
Evaluation with SWN models

Diallo Ousmane® — Mbaye Sene™ — Idrissa Sarr™*

* Département Mathématiques et d’informatique
Université Cheikh Anta Diop

Dakar

SENEGAL

ousmane81.diallo@ucad.edu.sn

e Département Mathématiques et d’informatique
Université Cheikh Anta Diop

Dakar

SENEGAL

mbaye.sene @ucad.sn

o Département Mathématiques et d’informatique
Université Cheikh Anta Diop

Dakar

SENEGAL

idrissa.sarr@ucad.sn

ABSTRACT. Recent systems which are in general composed by several resources and distributed
over a large-scale network, need high level models to be studied. In these complex systems such
as peer-to-peer systems, efficient and fast queries routing is necessary for managing applications
workload. Many works have been propose to deal with query routing, however none of these studies
does not rely on Stochastic Well formed Petri Nets (SWN) for modelling proposed approach. We aim
in this paper, to propose an algorithm for managing metadata needed to route queries. Moreover we
use SWN models to evaluate and validate our approach. Our solution is freshness-aware, thus gain
in the fact that stale data can be read under some limits. These limits are widley taken into account
for managing metadata coherently.Our study takes into account the concurrency, the synchronization,
the parallelism, the identity of the resources and their cooperation. We propose two SWN models for
structuring metadata: one with strong consistency and another with weak consistency. Simulation are
used to validate our approach and results obtainded demonstrate the feasability of our solution.

RESUME. Les systémes récents qui en général se composent de plusieurs ressources et sont repartis
sur un réseau a large échelle ont besoin, pour étre étudier, des modeles de haut niveau. Dans ces
systémes complexes, dans notre étude les systémes P2P, le choix d’un routage rapide et efficace des
requétes utilisateurs est nécessaire pour une bonne performance d’exécution. Beaucoup de travaux
ont été effectués sur le routage de requétes, toutefois aucune de ces études n’emploie les réseaux
de Pétri bien formés stochastiques (SWN) qui offrent une modélisation a haut niveau. Dans ce travalil,
nous proposons un algorithme de gestion des méta-données utilisées pour router les requétes. De
plus nous employons des modéles de SWN pour évaluer et valider notre approche. Notre solution
exploite le relachement des données, d’ou un gain du fait qu'une donnée obsoléte peut étre lue
sous une certaine limite. Ces limites sont prises en comptes pour la gestion de la cohérence des
méta-données. Notre étude prend en considération la synchronisation, le parallélisme, I'identité des

ressources et leur coopération. Nous proposons deux modéles de SWN pour structurer les méta-
données : un avec une cohérence forte et un autre avec cohérence relachée. Des simulations sont
employées pour valider notre approche et les résultats obtenus démontrent la faisabilité de notre
solution.

KEYWORDS : peer-to-peer systems, transactions routing, metadata, performance evaluation, SWN,
GreatSPN, WNSIM

MOTS-CLES : Systémes pair- a-pair, routage de transaction, méta-données, évaluation de perfor-
mances, SWN, GreatSPN, WNSIM

1. Introduction

Today, peer-to-peer infrastructures offer new opportunities for sharing data on a very
large scale. Each node stores some data and can also accesses data store elsewhere. Fur-
thermore each peer can handle requests sent by others nodes if it contains required data.
The proposed architecture plans a mode of asynchronous replication [1] which tolerates a
certain staleness between replica: one replica is slightly obsolete when it has not received
all the transactions updates which are involved. It is thus necessary to route the requests
transmitted by the applications towards the nodes of which the data are sufficiently fresh
with regard to the needs of the requests. A fast and effective routing is possible thanks
to the metadata which allow a good description of the address of the peers and their re-
sources.

In this paper, we are interested in the adaptation of an algorithm of efficient queries
routing in a peer-to-peer system with metadata. High level Petri Nets (SWN) are used to
build the models. To reach our goal, our work is inspired by works made in [2]. These
works present one solution for efficient query routing in a large-scale distributed database.
They use JuxMem (a software for managing the shared memory) to manage metadata.
JuxMem [3] uses two levels of locking to control the readings and writings on the catalog,
one in shared mode for the readings and the other one in exclusive mode for writings.
Locks mechanism leads to performance slowdown. In Web 2.0 applications context (eBay
[4], Flickr [5], FaceBook [6]), the large scale and heterogenous environment make failed
locking algorithm since failures can happen frequently. Applications can tolerate to read
stale data under some limits. Such a model of replication is very used to improve read
performance. For instance, in [10] the authors use tolerated staleness to route queries
and reach load balancing. Our routing solution is freshness-based thus metadata can be
managed without strong consistency.

To this end, we replicate our catalog in order to achieve parallelism when access-
ing metadata. Therefore we minimize the impact of exclusive locking used whenever
metadata are updated. The staleness is controlled by applications which defines their
constraints. The staleness is measured by the number of allowed modifications already
processed on the master catalog and not yet applied on the slave catalog.

The main objective of this work is to minimize average response time and to improve

throughput. To reach our goal, we propose two models for structuring metadata: one
with strong consistency and another with weak consistency. These models are built with
the formalism of Stochastic Well formed Petri Nets, GreatSPN tool and the symbolic
simulator WNSIM are used to obtain numerical values of the performance indices.
The rest of the paper is organized as follows: we recall in section 2, the main related
work. We describe our architecture for the query routing in Section 3. In the section 4, we
briefly present the stochastic well-formed Petri Nets (SWN). We assume that the reader
is familiar with basic properties of (Generalized) Stochastic Petri Net ((G) SPN), Colored
Petri Nets and even of SWNs. In the section 5, we estimate the performances of both
systems proposed thanks to the SWNs. Finally, we conclude in the section 6.

2. Related work

In the literature, many works were dedicated to effective solutions of transactions rout-
ing in distributed systems such as peer-to-peer [7, 8]. Enormous progress was made to

improve the performance of the distributed database (DDB) and to make more effective
the algorithms of transactions routing [9]. However, in the all research which was carried
out within the framework, we did not see any work using the SWN formalism to model the
adaptation of these algorithms. Thus we aimed to complete previous studies by taking into
account the synchronization, parallelism, cooperation and concurrency between encoun-
tered entities in complex systems such as a large-scale transactional database systems.
In complex systems, particularly the widely distributed databases, the transactions rout-
ing consists to route efficently the transactions sent by applications towards the accuracy
nodes or peers, i.e. which contain good data to be manipulated [8]. It is thus necessary
to route the requests transmitted by the applications towards of which nodes the data are
sufficiently fresh with regard to the needs of the requests. For a fast and effective rout-
ing you need a good management to the metadata which allow a good description of the
coordinates of the peers and their resources.

3. System architecture

We assume a replicated distributed database with an asynchronous replication model
[1]. Applications can tolerate to read stale data under some limits. Such a model of
replication is very used to improve read performance. For instance, in [10] the authors
use tolerated staleness to route queries and reach load balancing. We distinguish two
kinds of queries, update queries which modify data and read-only queries which merely
read data. To route queries, we use metadata to locate data accessed by queries. Metadata
store both data location and transaction processed on a replica. Thus, update queries
imply to modify metadata where read-only queries do not lead any writes. Finally, we
suppose that update operations are lower compared to read-only operations.

We aim to process fast read queries blocked by locks used in Juxmem when a write
operation is handled concurrently.

Our architecture (see figure 1) is inspired by works made in [2]. We leverage the
system architecture presented in [2] by using a master-slave schema for storing metadata
and a new component into the router structure to split the workload and route it to the
appropriate metadata copy.

) I (1 f
= Writin J i
{ 3 x|l
= s u ‘
- =
(%R I = JUXMEM |
e : , =
P2P System ;7] i o]

Figure 1. Our system architecture

— Description of the architecture:
AppKk: is an application client which send request.

TM: (transaction manager) is the router, thus intercept transactions sent by client
application and route them to database nodes. When it receives a transaction, it chooses
a database node for its execution according to loads and freshnesses (and possibly other
parameters).

Catalog: is the building blocks wich store the metadata. We distinguish M_Catalog
from the R_Catalog. The first acts as a master where the former is a slave. In other
words, metadata are replicated in such that writes operations are handled on the master
copy where read operations are routed to the slave copy.

Ni: is a database node which stores a copy of the data. Data are managed by a lo-
cal DBMS (Database Management System). Therefore transactions are controlled and
validated by local DBMS.

— Routing Protocol:

Our routing strategies is quite similar with those described in [2]. The main difference
is the distinction made in order to access catalog either for write operation or read op-
eration. Since several TMs can access simultaneously the same portion of the metadata,
therefore metadata inconsistency can be expected. To ensure consistency despite simulta-
neous access, many solutions rely on lock mechanisms. For example, Juxmem uses locks
to handle concurrent access. The major drawback of using locks is the blocked situation
created by confliting operations (read-only and writes operations). To avoid that read op-
erations are blocked by write operations, we use a master-slave mechanism. Precisely,
the master copy of the catalog is used whenever a transaction (update) must be routed and
slave copy remain avalaible for other operations (read-only queries). Thus, performances
of read operations are improved. Moreover, some read-only queries can tolerate some
staleness under some limits , thus, a stale copy of data (missing last updates) can be used.
For example retrieving the number of seats of a flight does not necessary requires the lasts
reservations.

1) In the case of a read-only, the TM accesses to R_catalog with the tolerated
staleness. If the tolerated staleness is verified, the TM read directly on the R_catalog.
After retrieving all required informations, the TM chooses the optimal node (i.e. the node
wich minimize the cost of execution). Finally, it routes the transaction to the chosen
database node, which can carry out the execution. After validation, the database node
sends directly the results to the client which initiate the transaction and notifies the TM
the successful end of the execution. If tolerated stalness is not achieved, the we refresh
the R_catalog before retrieving metadata. When the R_catalog is refreshed, orther TMs
are notified in such that they postpone their access for a while.

2) If the TM receives a transaction, it contacts directly the master catalog, which
always contains coherent metadata.

4. Stochastic Well formed Petri Nets

The need to have a high-level class allowing a direct analysis without passing in the
unfolding gave birth to Well Formed Petri Nets (WN) [11]. In these networks, the colour
classes and domains are structured well as well as the colour functions to allow the cre-
ation of algorithms making possible their study without passing by an unfolding. How-
ever, these networks did not take into account the stochastic character of certain networks,
hence the extension of this class to the Stochastic Petri Nets which ends in the Stochastic
Well-formed Petri Nets (SWN). These classes of high-level networks are suited well to

study very complex systems with concurrency, parallelism, synchronization and cooper-
ation. In the SWN [11, 12], colour domains for every place and transition are cartesian
product of basic colour classes usually modelling the various fields of the entities of the
system, or the entities themselves for transition colour domains. A basic class is a set of
entities which have the same behaviour or a comparable nature (class of servers, class of
resources). The basic color class in our model is: R = R1_|+) R2_ (requests of reading
and requests of writing).

4.1. Simulation versus exact calculus in SWN

When the size of the system is not too large, we can use the PERFSWN tool [13] to
compute exact performance indices. However, when the size and the complexity grow, the
analytical resolution is out of reach of current tools because of the size of this generated
chain. It is a general phenomenon and in most cases, simulation technics are used instead.
The main result in this paper was thus obtained thanks to the new simulator WNSIM [14,
15]. WNSIM is an event driven stochastic Discrete Event Simulator (DES) whose models
are generalized Stochastic Petri Nets (GSPN) or SWN. It allows the user to specify all
parameters of the simulation run: size of the batch, length of the initialization phase,
confidence level (5%) and confidence interval (0.95) i.e given a simulation result r4 of a
performance measure r, the exact value r. of r satisfies Prob(r. € [0.95r, 1.05r4]) >
(1 —0.05).

5. Performance evaluation with SWN models

Our goal is to compare performance indices of the mechanism of management of
metadata consistency with JuxMem [3] for queries routing made on the works [2] and
our new mechanism with weak consistency of metadata for read-only queries. To reach
our goal, we propose two models; these models have the same elementary class R. All
the places and transitions have the same colour domain (R). All the queries sent by
peers(reading-only and writing) of the network is modelled by the marking of the place
pairs. The marking of places W_waiting and R_waiting stand respectively for the
transactions in wait of the writing processor and the reading queries in wait of that of
reading. The current reading queries in processing are modelled by the marking of the
place reading and the current transactions in processing by the marking of the place
writing. The marking of the place Log models the log of the transactions processed on
the master catalog and not reproduced on its replica. The locking mechanism is repre-
sented by the marking of the place Synch. The most important transitions of these two
models are:

— Transitions begin_reading and end_reading (subclass of reading requests: R1_):
these transitions model the beginning/end of a reading request execution;

— Transitions begin_writing and end_writing (subclass of transactions: R2_): begin-
ning/end of a transaction treatment;

— Transactions begin_up and end_update: these transitions model the beginning/end
of updates of a metadata copy.

5.1. Model with strong consistency

This model (see figure 2) describes the functioning of a catalog distributed on a peer-
to-peer network managed in JuxMem. It essentially simulates the synchronization for the
common access to shared data in JuxMem. In this model, we consider that all the peers
(TMs) want to access the same catalogu’s granule. Every peer can send a reading query or
writing. The queries are executed according to their arrival order. If a peer sends a writing
query on a data for the catalog (place pairs of the model), it is executed according to its
arrival order (Arr until Ezit,ueue). In that case, the data is locked (consumption of the
token of the place Synch of the model and the entry to the writing processor modelled
by the place writing) by the beginning of the execution until its end. On the other hand,
if it is about a reading, it releases the other readings which follow it and block writings
until the end of its execution (consumption of the token of the place Synch and entry to
the reading processor modelled by the place reading).

<Az
)
*} R_waiing "\ bean_readng gng raging
=% | <> f\<x> >

x> ,ﬁ <>

() R}
Tars -

A Exit_gueue

<X>

Figure 2. Model with strong consistency

5.2. Model with weak consistency

This model (see figure 3) improves the previous by integrating weak consistency for
the readings. It functions in the same way. However in this model, the readings are not
any more executed in the same unity of treatment (processor) as writings. Indeed, writ-
ings on one granule are executed by the processor of our master catalog (place writing of
the model) managed by JuxMem. On the other hand, the readings on same granule (really
a copy) are executed by the processor of R_catalog (replica of the catalog in JuxMem).
Therefore, writings are going to jam between them only (exclusive locking) and the read-
ings will be released. Hence a parallelism of treatment between the readings and writings
is noticed.

The weak consistency is then controlled by a degree of tolerated staleness (modelled
by the parameter N on the inhibitor arc connecting the place Log with the transition
Deb_Lec) which depends on the current request. This degree of freshness is measured
with regard to the master catalog. It corresponds to a number of writings or transactions
made on the master catalog and not yet reproduced on the slave (R_catalog). So, if

a reading request on the data d/ wants to access the processor of R_catalog, we look
if the number of writings executed by the processor of the catalog on d/ and not yet
reproduced on R_catalog (number of tokens in the place Log) did not reach the degree
tolerated by the request (N). If it is not the case, the request will be treated without
problem. Otherwise, it will be put on hold and we proceed to an update of the metadata
of R_catalog by the update processor (place update of the model). During the update
phase of the data, the unities of treatment of the catalog and the R_catalog are blocked
to avoid a possible modification of the data during their reconciliation.

y route
Exit_rueue

Figure 3. Model with weak consistency

5.3. Analysis of our two models

Now, let us recall how to determine the performance indices which are in interest
(response time, throughput) in the context of SWN for our system. Let us take transition
Arr which models the requests sent by the clients (place pairs), it’s mean throughput for
(z) € R (i.e request type x) is given by:

X(Arr,z) = Z w(Arr, x).mw(m) (1)

zm)eTSRS7ﬁ1[Arr(x)>

where m is the symbolic tangible marking and w(Arr, x) is the firing rate for static sub-
classes (x) of transition Arr; TSRS is the tangible symbolic reachability set. Let us
denote by P’ the set of places visited by a request () starting from its generation until
the arrival of the response, m(p,) the marking of place p for the static cartesian product
of the tuple () in m and 7(m) the steady state probability for the marking 7. The mean
number of requests N (z) is:

N(x) =Y m(p,z)r(m) 2)
peP’
and the mean response time is computed (using Little law) as:
&5 _ N(z)
R(z) = ———— 3
(z) X(Arr, x) ®)
In this work, we are interested in the variation of the response time for the treatment
of the reading requests according to the consistency and to the load of the system and the

impact of the management of the catalog (synchronization of replicas) at the treatment
time of the requests. For the obtaining of these performances criteria, we modify the
following parameters:

— The number of requests, to make vary the charge of the system;
— the freshness degree tolerated

— And the rates of transitions isRead and isWrite to have a uniform distribution of
tokens in the simulation.
To make the qualitative and quantitative analysis we use the software WNSIM of Great-
SPN; let us recall that this simulator is the only tool which permits symbolic simulation
in SWN models. So as to do the comparison, we show several curves for the two models.

— Results
In this section, we present our experimental results.

Response time vs relaxation:
We subject both systems to a global charge of 5000 requests and release gradually the
freshness degree at the level of our system.

5.3.1. Case where there are more readings than writings

We subdivided the requests for the experiment of the figure 4 into 80% of read requests
and 20% of transactions. For instance in figure 5 we are 60% of read-only requests and
40% of transactions. We obtained the results below: according to the look of the curves
of both figures, we notice that if the relaxation degree (N) increases, the response time in
JuxMem remains constant. It is due to the fact that JuxMem tolerates no relaxation: the
data are subjected to a strong consistency; independently of the relaxation the response
time remains big and constant. The response time of our system, as for him, decreases
gradually. This can be explained by the fact that our system allows the parallelism of the
executions of reading requests with regard to those of writing. Let us note furthermore
that for a charge of 60% of requests and 40% of transactions (figure 5) the response time
in our system gets closer to that of JuxMem. This phenomenon is normal because the
more we have transactions, the more we have updates of synchronization at the level of
the replica thus more blockings of readings. We can say that globally the relaxation degree
as well as the charge of network affects the speed of requests routing.

"
@ w7
£ 2275
@ 5
0 =
27 8
Q a:] ! %2,65
T L o2e
G B
o
1] 25 t ——
1 2 3 4 5 6 7 8 910 1.2 3 4 5 6 7 &8 3 10
Relaxation degree (N) Relaxation degree (V)

Figure 4. Response time vs relaxation (30% of readings and 20% of writings)

—e—JuxMem

e
5 —————0—& 28 Z -
o w
a -
@ 2,75
Eat £
5 A
2T
£.] 2
° c
xﬂx- 5265
=2t 8
£ i 26
3 =
a1t 3255
=}
1} 25 +—+—+—+—+—+—+—+—+—+
1 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Relaxation degree (N} Relaxation degree (N)

Figure 5. Response time vs relaxation (60% of readings and 40% of writings)
5.%.2. Case where there are fewer readings than writings

We subjected both systems to a charge of 20% of requests and 80% of transactions
(see figure 6).

We notice the same looks as in the previous curves. On the other hand, the response
time of JuxMem is better than ours. Indeed, our system aims to improve the response time
of read-only requests treatment. However, as the execution of a request requires in most
of the time a certain freshness in spite of the relaxation, the system is compelled to make
synchronizations between the replicas. The frequency of these synchronizations is all the
bigger as there is of writings operation. Therefore, the increase of the number of writings
with regard to that of the readings has a negative impact on our model.

1
e

Quety response time (s}

12 3 4 5 6 7 8 9 10 1

2, 3 4 5 6 T
Relaxation degree (N) Relaxation degrae (N)

Figure 6. Response time vs relaxation (20% of readings and 80% of writings)

Impact of the management of the catalog:

The management of the catalog (of its replica) requires synchronizations during the
refreshments asked by the reading requests. During these phases of synchronization,
no request is executed to bring the data in an inconsistent state. This slows down the
system and increases its response time. So, the execution time of a request with only-
reading contains those of the writing requests that must be reproduced on the level of
R_catalogue so that this last one reaches the degree of freshness asked by the reading
request. The following experiment resumes the parameters of simulation of figure 4 but
calculates the impact of the synchronizations at the treatment time of the requests with
only-reading. We measure this impact through the waiting times of the requests during
the synchronizations. The figure 7 shows the results which we obtained: We see that the
more the relaxation degree is high, the more the impact due to the synchronization of the

replicas is small, what is completely logical. Let us note however that the more we relax
the freshness, less the results of the requests with only reading will be reliable.

Impact of synchronization (%
5
o

1 2 3 4 5 6 7 8 9 10
Relaxation degree (N}

Figure 7. Impact of the management of the catalogue (synchronization)

6. Conclusion

We have proposed in this paper a new transactional distributed system with weak

consistency of metadata managed in JuxMem and its requests routing algorithm and we
have compared its performances criteria (response time, impact of the management of the
catalog) to those obtained with strong consistency. The choice of an effective algorithm
of fast requests routing is essential to guarantee, in the Web 2.0 applications, a good
performance of requests execution.
Due to the high level of modelling of SWN, synchronization and parallelism between
the read-only queries treatment and that of the transactions is taken into account in our
study, this is an important result in our context. Refined performance indices depending
on subclass cartesian product are computed via the symbolic simulator WNSIM, this is
another important result of this article; the global performance indices presented on this
work are obtained by merging those refined performances. The other main contribution
of this work is how to use stochastic well formed Petri nets in complex systems such as
distributed database with weak consistency of metadata.

In the future works, the existence of optimal degree of tolerated staleness and the
correlations of this optimal degree with the parameters of the system (transactional load)
will be investigated. This would allow us to see more the limits of our proposition to be
able to bring it possible improvements.

7. References

[1] G. et O. Gardarin. Le Client-Serveur. Editions Eyrolles, 1997.

[2] L. SARR, H. Naacke, and S. Gan,carski. DTR: Distributed Transaction Routing in a Large
Scale Network. In VECPAR 08 Workshop on High-Performance Data Management in Grid
Environments (selected papers), 2008.

[3] Mathieu Jan. JUXMEM : un service de partage transparent de données pour grilles de calcul
fondé sur une approche pair-a-pair. These de doctorat, UNIVERSITE DE RENNES 1, France,
2006.

[4] eBay. http ://www.ebay.com.

[5] Flickr. http ://www.flickr.com.

[6] FaceBook. http ://www.facebook.com.

[7] A. Rowstron and P. Druschel. Pastry: scalable, distributed object location and routing for
large-scale peer-to-peer systems. IFIP/ACM Int. Conf. on Distributed Systems Platforms (Mid-
dleware), 329-350, 2001.

[8] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord
: A scalable peer-to-peer lookup service for internet applications. In Proc. ACM SIGCOMM,
Aot 2001. http://citeseer.csail.mit.edu/469485.html.

[9] Dmitri Loguinov, Anuj Kumar, Vivek Rai, Sai Ganesh. Graph-Theoretic Analysis of Structured
Peer-to-Peer Systems: Routing Distances and Fault Resilience. SIGCOMM 03, August 25-29,
2003, Karlsruhe, Germany. Copyright 2003 ACM 1-58113-735-4/03/0008.

[10] S. Gancarski, H. Naacke, E. Pacitti and P. Valduriez. The Leganet System: Freshness-Aware
Transaction Routing in a Database Cluster. Information Systems Journal 32(2), pp. 320-343,
2006.

[11] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well formed colored nets and
their symbolic reachability graph. In Springer- Verlag, editor, Proc. of the 11th International
Conference on Application and Theory of Petri Net, pages 373-396, Paris, France, 1990.

[12] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed colored
nets and symmetric modeling applications. IEEE TC 1993.

[13] S. Haddad, P. Moreaux, and M. Sene. Performance Evaluation with SWN: a technical contri-
bution. R eseaux et syst‘emes r’epartis - CP Vol 13 N 6, 2001.

[14] G. Franceschinis, R. Gaeta, and C. Bertoncello. WNSIM: manual. PEG, Dipart.di Informat-
ica, Univ. di Torino (Italy), 2001.

[15] G. Franceschinis, R. Gaeta, and C. Bertoncello. GreatSPN: User’s Manual (version 2.0.2).
PEG, Dipart. dilnformatica, Univ. di Torino (Italy), 2002.

