Frequent Query Computation in a Star Schema

Cheikh Tidiane Dieng**, Tao-Y. Jeri, Dominique Laurerit

* ETIS - CNRS - ENSEA - Université de Cergy Pontoise FRANCE
{ien,dlaurent}@u-cergy.fr

** Laboratoire d’Analyse Numérique et Informatique

Université Gaston-Berger - Saint-Louis SENEGAL
tidiane.dieng@gmail.com

RESUME. Le probléme de la recherche de requétes fréquentes dans les bases de données rela-
tionnelles est connu comme étant trés difficile, méme si on se limite aux requétes conjonctives sur
une seule table. Cependant, nous montrons qu’en utilisant les dépendances fonctionnelles et les dé-
pendances d'inclusion, le calcul des requétes conjonctives fréquentes est envisageable dans le cas
des bases de données organisées selon un schéma étoile. Plus précisément, nous montrons que les
requétes fréquentes de la forme projection-sélection-jointure, pour lesquelles la jointure contient la
table de faits, peuvent étre calculées efficacement par un algorithme par niveau de type Apriori.

Pour ce faire, nous présentons dans cet article un nouvel algorithme, appelé Frequent Query Finder
(FQF), et nous montrons par des tests que cet algorithme permet le calcul des requétes fréquentes
de maniere tres efficace.

ABSTRACT. The problem of computing frequent queries in relational databases is known to be in-
tractable, even when only conjunctive queries are considered. However, we show that using functional
and inclusion dependencies, computing frequent conjunctive queries becomes feasible for databases
operating over a star schema. More precisely, it is shown that frequent projection-selection-join
queries, for which the join contains the fact table, can be efficiently computed, using a level-wise
algorithm such as Apriori.

To this end, we introduce in this paper, a novel algorithm, called Frequent Query Finder (FQF), and
we report on experiments showing that our algorithm allows for a particularly efficient computation of
frequent queries.

MOTS-CLES : Requétes Fréquentes, Dépendances Fonctionnelles, Dépendances d'Inclusion, Com-
paraison de Requétes.

KEYWORDS : Frequent Queries, Functional Dependencies, Inclusion Dependencies, Query Com-
parison.




1. Introduction

The problem of discovering frequent queries in a (relatipa@abase is one of a main
topics in data mining. However, this problem is known to keactable, even when only
conjunctive queries are considered, due to the fact thasites of the search space is
exponential in the size of the database.

On the other hand, as argued in [4, 5], mining all frequenjwtetive queries from
a given database becomes tractable if constraints on thbaks, such as functional de-
pendencies and inclusion dependencies, are taken intartctodeed, it has been shown
in [4, 5] that such dependencies allow for comparing quexte®rding to a pre-ordering
with respect to which the support measure is anti-monot@dsa@ consequence, a level-
wise algorithm such as Apriori ([1]) can be used, with theibaslditional following
feature : the considered pre-ordering between queriesexan equivalence relation for
which two equivalent queries have the same support. Coesdigiione computation per
equivalence class allows to determine the support of alligsef this class.

We refer to [3, 4, 5] for related work. We simply mention hehnattthe work in [2,
3] is closely related to ours, because in [2, 3], frequenfuactive queries are mined
in relational databases with several relations. Howewethis work, no dependency is
involved in query comparison, as opposed to our work.

The main contribution of the paper is, based on the approaebepted in [5], to
propose a novel algorithm for the computation of frequemtrggs, calledrequent Query
Finder (FQF) in the case where the database to be mined operatesarsatema.

The paper is organized as follows : In Section 2, we recathffs] the basic definitions
and properties of our approach. Then, in Section 3, we ptesenalgorithm FQF for
mining conjunctive queries and in Section 4, we report oreexpents that show that our
algorithms are efficient. Section 5 concludes the paper audisses future work.

2. Formal Model

2.1. Queries

We first recall that a databage over astar schemaonsists of a distinguished table
o with schemal”, called thefact table together with a set of other tablés . . . , 6 5y with
schemad, ..., Dy, called thedimension tablessuch that :

1) If Ky,..., Ky arethe (primary) keys ¥, . . ., d v, respectively, then, denoting
by K the union of these keys¢., K = K ... Ky), K is the key ofp. In other words, for
everyi = 1,..., N, ¢, satisfies the functional dependenky — D; andy satisfies the
functional dependenclf’ — F'. We denote byF the set of these functional dependencies.

2) Foreveryi = 1,...,N, g, (p) C 7k, (d;) (thus eachk; is a foreign key in
the fact tablep). The attribute sed/ = F'\ K is called themeasuref the star schema.

As usual, we denote h ' the set of all functional dependencies that can be inferred
from F, using the Armstrong’s axioms, and we denoteXby the set of all attributes!
such thatX — Aisin 7+ ([6]).

In what follows, we consider dixed databaseA = (41,...,dn, ), along with
projection-selection-join queries with the following sjfeities :

— the selection condition is either tleanpty tuple denoted byT (meaning that all
tuples are selected), or a tupjever the (intended) relation scheriia(meaning that all



tuplest such that.Y = y are selected);

— the joins are performed along keys and foreign keys, thaittser the join is reduced
to a single table, or it involves the fact talte

Definition 1 LetA = (41,...,dn, ) be a database over a star schema. The considered
set of queries, denoted IgY, is the set of all queries of the forgn= 7 x (o (r)), or more
simplyrx o, (r) such thatXY C R (R denotes the schemadf and where :

—r is either a table inA or a join of tables inA containing the tablep;

—y is either the empty tupl&or a tuple over the relation scheméa.

For every query; in Q, thesupport ofg in A, denoted byup(q), is the cardinality of
the answer tay, i.e., sup(q) = |¢|. Given a support threshold min-sup, a quers said
to befrequentf sup(q) > min-sup.

2.2. Query Comparison

As in [5], queries inQ are compared according to the following pre-ordering.

Definition 2 Letq = wxo,(r) andg: = 7x, oy, (r1) be queries inQ. Theng; is said to
bemore specific thag in A, denoted by < ¢, if one of the following holds :

1) y1 € 7y, (1)
2)y € my(r), y1 € my, (r1), andY; — X € FT
3) All of the following hold :

a) eitherr = ry or r; involves the fact table,

b)y € my (1), y1 € my (1), Y1 — X1 € FT,

C) XY, —» X; € FrandY; =Y € FT,

d) yy1 € Tyy, (r x 11).

It has been seen in [5] that the relatiehis indeed a pre-ordering.§., reflexive and
transitive), with respect to which the support is anti-mimmic. That is, for all queries
andg; in Q, we have i < 1 = sup(q1) < sup(q).

Clearly, this property is required when mining patternsoading to a level-wise algo-
rithm, such as Apriori ([1]). Moreover, the pre-orderiggnduces an equivalence relation
defined as follows : two querigsandg; in Q are said to bequivalentdenoted by = ¢4,
if ¢ < g1 andg; =< ¢ hold. The equivalence class of a queris denoted byyq].

As a consequence of the anti-monotonicity property, itéuut that equivalent queries
have thesamesupport. Therefore, instead of computing the supportsdifidual queries,
we consider onlpnequery per equivalence class. On the other hand, the pretogdeis
extended to the set of equivalence clagsemnd then becomes andering(i.e.,reflexive,
anti-symmetric and transitive) ovér Consequently, a clasg| is said to bdrequentf its
support {.e.,the support of all queries ifg]) is greater than or equal tain-sup

Moreover, it is easy to see that all queries= nxo,(r) in Q such thaty ¢ my (r)
are equivalent and have a support equdd,ta value meant to be less than the support
thresholdmin-sup Similarly, all queries; = mxo,(r) in Q such thaty € my(r) and
Y — X € F* are equivalent, and have a support equdl,tanother value meant to be
less tharmmin-sup Thus, denoting these equivalence classe€pgndC;, respectively,
these classes are not considered in the computation.



Algorithm FQF

Input : The databasé associated to afv-dimensional star schema and
a support thresholdhin-sup
Output : The setF'req of all frequent classes.
Method :
Freq=10
fori=1,...,N do
mine(d;, min-sup Freq(d;))
Freq = FreqU Freq(d;)
compute J =1 X ... X In X ¢
mine(J, min-sup Freq(J))
Freq= FreqU Freq(J)
return F'req

Figure 1. The main algorithm FQF

On the other hand, equivalence classes different@aandC,, whose set is denoted
by C*, have been characterized in [5]. We simply recall that, gaejueryy = wxo,(r)
such thafg] is in C*, we consider the representatiye = wx o,/ (r’) such that :

1) X' =(XY)TandY’' =Y,

2) ' = rif r is a dimension table or, otherwisé,is the join of all tables i\,

3) ¢/ is the tuple ovel’ T such thaty is a subtuple of/ andy’ € my+ (1').
In the remainder of the paper, all considered queries ataraxsto satisfy the properties
above, and stand for their equivalence classes.

3. Algorithms

3.1. Main Algorithm : FQF

As in [5], frequent classes id@* are computed by a level-wise algorithm, called
Frequent Query Finde(FQF) whose main steps are shown in Figure 1 : all dimension
tables are first mined, and then the jainof all tables inA is mined. Moreover, as in
[5], we define the notion ofieneric classn order to avoid generating classes that are
processed in the same way.

Definition 3 Given a clasg = mxo,(r) in C*, thegeneric clasassociated tq, denoted
by (X, Y, r), is the set of all classesx o, (r) in C* such that)’ is a tuple inwy (), i.e.,
(X, Y,r) ={nxoy(r) €C* |y € my(r)}.

Algorithmmine, shown in Figure 2, follows a level-wise strategy ([1]). Na&lgp starting
with the less specific generic class, that jsterate the following steps until no frequent
classes are generate(i) generate and prune the set of candidate classes (se€i{p]),
compute the supports of the remaining candidate classdg;&h eliminate all classes
whose support is less than the support threshold.

3.2. Algorithm scan

We note that scanning a relation for the computation of fesjglasses over a given
tabler has to be efficient. This is so because such a scan is requiegich level of



Algorithm mine

Input : Atabler (either a dimension tabl& or the join.J) defined overR.
Output : The setF'req(r) of all frequent classes i@i* of the formzx o (7).
Method :
if |r| < min-supthen
//no computation since for everyin C* of the formnx oy (1), |r| > sup(q)
Freq(r) =10
else //the computation starts with the generic clégs 0, r)
L={(R,0,r)} ; Freq(r) = {rro(r)}
while L # () do
C = generate(L, )
C =prune(C, L, )
scan(C, L, Lryeq(T))
//all generic classes df are instanciated anir..4(r) is the set of frequent classesin
Freq(r) = Freq(r) U Lrreq(T)
return Freq(r)

Figure 2. Computing frequent queries on a table r

candidate generation, and this for all dimension tablesfanthe join table/. The main
difficulty is that every tuple in the answer to a query must berted onlyonce whereas
it might occur several times when scanning

In order to cope with this difficulty, before scanningve associate with an auxiliary
table, denoted by AUX(), and that contains a set of schemas associated to eachrtuple
r. Assuming that' containsn tuplest, . .., t,, the first element AUXr)[1] of AUX(r)
is set to the empty set, and for evéry: 2, .. ., n, theith element of AUX¢), denoted by
AUX (r)[¢], contains all schema$ such that(i) AUX (r)[¢] contains no subset ¢f, and
(49) there exists} < ¢ such that;.S = ¢;.S. The corresponding algorithm is shown in
Figure 3, wherenatch(t;, t;) stands for the set of all attributelssuch that;. A = t;. A.

Algorithm 1

Input : Atabler to be scanned containing tuples. . . , t,.
Output : The table AUX().
Method :
AUX[1] = 0
for eachi=2,...,ndo
AUX (r)[i] =0
for eachj=1,...,2—1do
compute match(t;,t;)
if AUX(r)[¢] contains no super set etatch(t;,t;) then
AUX (r)[7] = AUX(r)[i] U match(t;, t;)
return AUX(r)

Figure 3. Computing the auxiliary table AUX(r)

Now, given a table- and assuming that AUpt) has been computed, the supports of
equivalence classes overare computed through parallel scansradind AUX(r). The
corresponding algorithrcan is shown in Figure 4. At a given level of Algoritheran,



we have a sef’ of candidate generic classes of the foff, Y, r) for which r contains
the tupled,, ..., t,. The goal of Algorithmscan is then to compute all frequent classes
associated with a generic clasginTo do so, foreach= 1, . .., n, the following actions
are performed, for everyX,Y,r) in C':

1) If AUX (r)[i] contains a super schemaXf thent,. X has been encountered for
somej < i. Thust;.X has already been processed for all classes with a projextien
X. Otherwiset;.X is encountered for the first time, and thus, has to be prodesse

2) In the latter case, if AUX)[i] contains a super schema Bfthen the query
g = mwxoy, y(r) has been processed previously. Two cases are then possible :

a) Eitherq is associated witiX, Y, ), in which case its support is incremented.

b) Orq is not associated withX, Y, r), in which casey is processed for the first time.
We check ifg can be pruned (see below), and if not, its support is inigalito].

3) At this stage, all supports of all classes that have to bgpeied are known. All
classes whose support is greater than or equailitesupare put inL z,.q(r) and the set
L of frequent generic classes for the next level is updated.

Regarding the pruning, we recall that some pruning is paréatin Algorithmmine,
but for generic classes, whereas the pruning in Algorituan operates on classes. A
generic clasgX, Y, r) is pruned if at least one its predecessor generic classesr(kcg
to <) contains no frequent classes. On the other handjf, ) is not pruned, it might
happen thatrx o, (r) in (X,Y,r) can be pruned. This is checked in Algorithsan as
mentioned in item 2(b) above, according to AlgoritheruneQuery shown in Figure 5.

4. Experiments

We performed experiments on an Pentium Duo Core with 2Go maimory running
on Ubuntu Linux 2.6. The algorithm is written in Java usinddIDto communicate with
MySql. Datasets have been generated using our generatad lwa the one by IBM.
The generated databases over star schemas, are denoféd byl-M -1 where D is
the number of dimensions] is the number of attributes\/ is the number of measure
attributes, and” is the number of tuples in the fact table. Figure 6 shows thémes of
FQF compared to those presented in [5]d6+2-12-1-T", with T" betweerb0 and5000.

As shown in Figure 7, the time spent in mining the queriestierdatabase#-2-12-
1-T" with T between1000 and 100000 is very low compared to that for calculating the
auxiliary table. It is important to note that, in our expegints, we had no Out Of Memory
exceptions, as with the algorithm presented in [5] wheaxceeds 6000. Moreover, as
seen in Figure 8, the time spent for mining queries decreaises the number of dimen-
sions increases. This is so because, given a number ofuddsilf12 in our case), when
T increases, more functional dependencies are availabdes@nless classes are to be
considered. We also point out that if the number of tupleseiases, the time spent for
mining queries is almost constant.

5. Conclusion and Further Work

We presented algorithms for mining frequent queries inlzlzga over a star schema,
and we showed that they outperform those proposed in [5]e®periments show that the
performance gap increases with the number of tuples, andyhasing the AUX table,



Algorithm scan

Input: The setC of candidate generic classes, the table AU)a given thresholdhin-sup
Output : The setL of frequent generic classes@) and the associated frequent clasbesecq(r).
Method :
L=05 Lrreg(r) =0
for each (X,Y,r) € C'do
L((X,Y,7)) =0
end for each
for eachi=1,...,ndo //r containstuples:,...,t,
for each (X,Y,r) € C'do
if 3 X’ € AUX(r)[i] such thatX C X’ then
//t;.X has been encountered before, and thus has been counted
nothing to do
else //t;.X has not been encountered before, and thus must considered
if 3Y" € AUX(r)[¢] such thaft” C Y’ then
//t;.X must be counted for the supportof o,.v (r)
if (X,t.Y,r) € L({X,Y,r)) then
//mx o,y (r) has already been encountered, thus update its support
sup(rxor,.y(r)) = sup(nxoy,.v(r)) +1
else //mxoy¢,.v(r)has not been encountered, thus prune or initialize its stippo
if not(pruneQuery(mxo:,.y(r))) then
sup(mxor,.y(r)) =1
L(<X7 Y, T)) = L(<X7 Y, T)) U {ﬂ—X‘TtrY(r)}
for each (X,Y,r) € C do
LU{X,Y,r)) = L((X,Yr)\ {mxoy(r) | sup(mxoy(r)) < min-sug
if L({X,Y,7)) # 0 then
LFreq(r) = Lireq(r) UL((X,Y, 1))
L=LU{(X,Y,r)}
return L and Lpreq(r)

Figure 4. Scanning the table r

Algorithm pruneQuery

Input: Aclassq = mxoy(r).

Output : boolean.

Method :

if there existd € Y and ac dom(A) such thay = mx 0,/ (r) ¢ Lrreq(r) andy = y'a then
return true;

return false;

Figure 5. Class Pruning

the time for mining queries become very low. Further worksists in processing further
tests and optimizing the computation of AUX table by an inceatal approach. We also
plan to generalize our approach to database schemas odinestdr schemas.




350

300 2

250 ~—4—DBQueriesIDEAS

200

/’ ——QueriesFinder:Time for
150 calculating AUX

Time'seconde)

100 QueriesFider:Time for MINE

50 —==Total TIME for QueriesFinder

50 100 200 500 1000 2000 3000 5000

Number of tuples

Figure 6. Runtime Comparison.

25000 6

20000 7/L 5 \\
g 15000 7# —+—QueriesFinder:Time for g i \
3 / calculate AUX e
@ 10000 ~ %
E /" —#—QueriesFinder:Time for E . \ —B—QueriesFinder:Time
. S MINING Queries E 2 elapsed for MINE
Y — Total TIME i \.\
0 ~u
g88888828s8 o
§28§88¢28 3 : : s 5
Number of tuples Number of dimensions
Figure 7. Runtime over the number of Figure 8. Runtime over the number of di-
tuples in fact table. mensions (with 2000 tuples in fact table)

6. Bibliographie

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.rkamo. Fast discovery of associa-
tion rules. InAdvances in Knowledge Discovery and Data MiniMT Press, 1996.

[2] B. Goethals and J. V. den Bussche. Relational assoniatiles : getting warmer. |IESF Ex-
ploratory Workshop on Pattern Detection and Discovery irid¥dining, LNCS 2447Springer-
Verlag, 2002.

[3] B. Goethals, W. L. Page, and H. Mannila. Mining assooiatiules of simple conjunctive
queries. INSIAM, 2008.

[4] T. Jen, D. Laurent, and N. Spyratos. Mining all frequeelestion-projection queries from a
relational table. IEEDBT’'08 ACM Press, 2008.

[5] T.Jen, D. Laurent, N. Spyratos. Mining Frequent QueineRelational Databases. IDEAS
ACM Press, 2009.

[6] J. Ullman.Principles of Databases and Knowledge-Base Syst&@uomp. Sc. Press, 1988.



