
Frequent Query Computation in a Star Schema

Cheikh Tidiane Dieng∗,∗∗, Tao-Y. Jen∗, Dominique Laurent∗

* ETIS - CNRS - ENSEA - Université de Cergy Pontoise FRANCE
{jen,dlaurent}@u-cergy.fr
** Laboratoire d’Analyse Numérique et Informatique
Université Gaston-Berger - Saint-Louis SENEGAL
tidiane.dieng@gmail.com

RÉSUMÉ. Le problème de la recherche de requêtes fréquentes dans les bases de données rela-
tionnelles est connu comme étant très difficile, même si on se limite aux requêtes conjonctives sur
une seule table. Cependant, nous montrons qu’en utilisant les dépendances fonctionnelles et les dé-
pendances d’inclusion, le calcul des requêtes conjonctives fréquentes est envisageable dans le cas
des bases de données organisées selon un schéma étoile. Plus précisément, nous montrons que les
requêtes fréquentes de la forme projection-sélection-jointure, pour lesquelles la jointure contient la
table de faits, peuvent être calculées efficacement par un algorithme par niveau de type Apriori.
Pour ce faire, nous présentons dans cet article un nouvel algorithme, appelé Frequent Query Finder
(FQF), et nous montrons par des tests que cet algorithme permet le calcul des requêtes fréquentes
de manière très efficace.

ABSTRACT. The problem of computing frequent queries in relational databases is known to be in-
tractable, even when only conjunctive queries are considered. However, we show that using functional
and inclusion dependencies, computing frequent conjunctive queries becomes feasible for databases
operating over a star schema. More precisely, it is shown that frequent projection-selection-join
queries, for which the join contains the fact table, can be efficiently computed, using a level-wise
algorithm such as Apriori.
To this end, we introduce in this paper, a novel algorithm, called Frequent Query Finder (FQF), and
we report on experiments showing that our algorithm allows for a particularly efficient computation of
frequent queries.

MOTS-CLÉS : Requêtes Fréquentes, Dépendances Fonctionnelles, Dépendances d’Inclusion, Com-
paraison de Requêtes.

KEYWORDS : Frequent Queries, Functional Dependencies, Inclusion Dependencies, Query Com-
parison.

1. Introduction

The problem of discovering frequent queries in a (relational) database is one of a main
topics in data mining. However, this problem is known to be intractable, even when only
conjunctive queries are considered, due to the fact that thesize of the search space is
exponential in the size of the database.

On the other hand, as argued in [4, 5], mining all frequent conjunctive queries from
a given database becomes tractable if constraints on the database, such as functional de-
pendencies and inclusion dependencies, are taken into account. Indeed, it has been shown
in [4, 5] that such dependencies allow for comparing queriesaccording to a pre-ordering
with respect to which the support measure is anti-monotonic. As a consequence, a level-
wise algorithm such as Apriori ([1]) can be used, with the basic additional following
feature : the considered pre-ordering between queries induces an equivalence relation for
which two equivalent queries have the same support. Consequently, one computation per
equivalence class allows to determine the support of all queries of this class.

We refer to [3, 4, 5] for related work. We simply mention here that the work in [2,
3] is closely related to ours, because in [2, 3], frequent conjunctive queries are mined
in relational databases with several relations. However, in this work, no dependency is
involved in query comparison, as opposed to our work.

The main contribution of the paper is, based on the approach presented in [5], to
propose a novel algorithm for the computation of frequent queries, calledFrequent Query
Finder (FQF) in the case where the database to be mined operates on a star schema.

The paper is organized as follows : In Section 2, we recall from [5] the basic definitions
and properties of our approach. Then, in Section 3, we present our algorithm FQF for
mining conjunctive queries and in Section 4, we report on experiments that show that our
algorithms are efficient. Section 5 concludes the paper and discusses future work.

2. Formal Model

2.1. Queries

We first recall that a database∆ over astar schemaconsists of a distinguished table
ϕ with schemaF , called thefact table, together with a set of other tablesδ1, . . . , δN with
schemasD1, . . . , DN , called thedimension tables, such that :

1) If K1, . . . ,KN are the (primary) keys ofδ1, . . . , δN , respectively, then, denoting
byK the union of these keys (i.e.,K = K1 . . .KN),K is the key ofϕ. In other words, for
everyi = 1, . . . , N , δi satisfies the functional dependencyKi → Di andϕ satisfies the
functional dependencyK → F . We denote byF the set of these functional dependencies.

2) For everyi = 1, . . . , N , πKi
(ϕ) ⊆ πKi

(δi) (thus eachKi is a foreign key in
the fact tableϕ). The attribute setM = F \K is called themeasureof the star schema.

As usual, we denote byF+ the set of all functional dependencies that can be inferred
from F , using the Armstrong’s axioms, and we denote byX+ the set of all attributesA
such thatX → A is inF+ ([6]).

In what follows, we consider afixed database∆ = (δ1, . . . , δN , ϕ), along with
projection-selection-join queries with the following specificities :

– the selection condition is either theempty tuple, denoted by⊤ (meaning that all
tuples are selected), or a tupley over the (intended) relation schemaY (meaning that all

tuplest such thatt.Y = y are selected) ;

– the joins are performed along keys and foreign keys, that is, either the join is reduced
to a single table, or it involves the fact tableϕ.

Definition 1 Let∆ = (δ1, . . . , δN , ϕ) be a database over a star schema. The considered
set of queries, denoted byQ, is the set of all queries of the formq = πX(σy(r)), or more
simplyπXσy(r) such thatXY ⊆ R (R denotes the schema ofr), and where :

– r is either a table in∆ or a join of tables in∆ containing the tableϕ ;

– y is either the empty tuple⊤or a tuple over the relation schemaY .
For every queryq in Q, thesupport ofq in ∆, denoted bysup(q), is the cardinality of

the answer toq, i.e.,sup(q) = |q|. Given a support threshold min-sup, a queryq is said
to befrequentif sup(q) ≥ min-sup.

2.2. Query Comparison

As in [5], queries inQ are compared according to the following pre-ordering.

Definition 2 Let q = πXσy(r) andq1 = πX1
σy1

(r1) be queries inQ. Thenq1 is said to
bemore specific thanq in ∆, denoted byq � q1, if one of the following holds :

1) y1 6∈ πY1
(r1)

2) y ∈ πY (r), y1 ∈ πY1
(r1), andY1 → X1 ∈ F+

3) All of the following hold :

a) eitherr = r1 or r1 involves the fact tableϕ,

b) y ∈ πY (r), y1 ∈ πY (r1), Y1 → X1 6∈ F+,

c) XY1 → X1 ∈ F+ andY1 → Y ∈ F+,

d) yy1 ∈ πY Y1
(r ⋊⋉ r1).

It has been seen in [5] that the relation� is indeed a pre-ordering (i.e., reflexive and
transitive), with respect to which the support is anti-monotonic. That is, for all queriesq
andq1 in Q, we have :q � q1 ⇒ sup(q1) ≤ sup(q).

Clearly, this property is required when mining patterns according to a level-wise algo-
rithm, such as Apriori ([1]). Moreover, the pre-ordering� induces an equivalence relation
defined as follows : two queriesq andq1 in Q are said to beequivalent, denoted byq ≡ q1,
if q � q1 andq1 � q hold. The equivalence class of a queryq is denoted by[q].

As a consequence of the anti-monotonicity property, it turns out that equivalent queries
have thesamesupport. Therefore, instead of computing the supports of individual queries,
we consider onlyonequery per equivalence class. On the other hand, the pre-ordering� is
extended to the set of equivalence classesC, and then becomes anordering(i.e.,reflexive,
anti-symmetric and transitive) overC. Consequently, a class[q] is said to befrequentif its
support (i.e., the support of all queries in[q]) is greater than or equal tomin-sup.

Moreover, it is easy to see that all queriesq = πXσy(r) in Q such thaty 6∈ πY (r)
are equivalent and have a support equal to0, a value meant to be less than the support
thresholdmin-sup. Similarly, all queriesq = πXσy(r) in Q such thaty ∈ πY (r) and
Y → X ∈ F+ are equivalent, and have a support equal to1, another value meant to be
less thanmin-sup. Thus, denoting these equivalence classes byC0 andC1, respectively,
these classes are not considered in the computation.

Algorithm FQF

Input : The database∆ associated to anN -dimensional star schema and
a support thresholdmin-sup.
Output : The setFreq of all frequent classes.
Method :
Freq = ∅
for i = 1, . . . , N do

mine(δi, min-sup, Freq(δi))
Freq = Freq ∪ Freq(δi)

compute J = δ1 ⋊⋉ . . . ⋊⋉ δN ⋊⋉ ϕ
mine(J , min-sup, Freq(J))
Freq = Freq ∪ Freq(J)
return Freq

Figure 1. The main algorithm FQF

On the other hand, equivalence classes different thanC0 andC1, whose set is denoted
by C∗, have been characterized in [5]. We simply recall that, given a queryq = πXσy(r)
such that[q] is in C∗, we consider the representativeq+ = πX′σy′(r′) such that :

1) X ′ = (XY)+ andY ′ = Y +,

2) r′ = r if r is a dimension table or, otherwise,r′ is the join of all tables in∆,

3) y′ is the tuple overY + such thaty is a subtuple ofy′ andy′ ∈ πY +(r′).
In the remainder of the paper, all considered queries are assumed to satisfy the properties
above, and stand for their equivalence classes.

3. Algorithms

3.1. Main Algorithm : FQF

As in [5], frequent classes inC∗ are computed by a level-wise algorithm, called
Frequent Query Finder(FQF) whose main steps are shown in Figure 1 : all dimension
tables are first mined, and then the joinJ of all tables in∆ is mined. Moreover, as in
[5], we define the notion ofgeneric classin order to avoid generating classes that are
processed in the same way.

Definition 3 Given a classq = πXσy(r) in C∗, thegeneric classassociated toq, denoted
by 〈X,Y, r〉, is the set of all classesπXσy′(r) in C∗ such thaty′ is a tuple inπY (r), i.e.,
〈X,Y, r〉 = {πXσy′(r) ∈ C∗ | y′ ∈ πY (r)}.

Algorithm mine, shown in Figure 2, follows a level-wise strategy ([1]). Namely, starting
with the less specific generic class, that isr, iterate the following steps until no frequent
classes are generated :(i) generate and prune the set of candidate classes (see [5]),(ii)
compute the supports of the remaining candidate classes, and (iii) eliminate all classes
whose support is less than the support threshold.

3.2. Algorithm scan

We note that scanning a relation for the computation of frequent classes over a given
table r has to be efficient. This is so because such a scan is required at each level of

Algorithm mine

Input : A tabler (either a dimension tableδi or the joinJ) defined overR.
Output : The setFreq(r) of all frequent classes inC∗ of the formπXσy(r).
Method :
if |r| < min-supthen

//no computation since for everyq in C∗ of the formπXσy(r), |r| ≥ sup(q)
Freq(r) = ∅

else //the computation starts with the generic class〈R, ∅, r〉
L = {〈R, ∅, r〉} ; Freq(r) = {πRσ⊤(r)}
while L 6= ∅ do

C = generate(L, r)
C = prune(C, L, r)
scan(C, L,LFreq(r))
//all generic classes ofL are instanciated andLFreq(r) is the set of frequent classes inL
Freq(r) = Freq(r) ∪ LFreq(r)

return Freq(r)

Figure 2. Computing frequent queries on a table r

candidate generation, and this for all dimension tables andfor the join tableJ . The main
difficulty is that every tuple in the answer to a query must be counted onlyonce, whereas
it might occur several times when scanningr.

In order to cope with this difficulty, before scanningr, we associater with an auxiliary
table, denoted by AUX(r), and that contains a set of schemas associated to each tuplein
r. Assuming thatr containsn tuplest1, . . . , tn, the first element AUX(r)[1] of AUX(r)
is set to the empty set, and for everyi = 2, . . . , n, theith element of AUX(r), denoted by
AUX(r)[i], contains all schemasS such that(i) AUX(r)[i] contains no subset ofS, and
(ii) there existsj < i such thattj .S = ti.S. The corresponding algorithm is shown in
Figure 3, wherematch(ti, tj) stands for the set of all attributesA such thatti.A = tj .A.

Algorithm 1

Input : A tabler to be scanned containing tuplest1, . . . , tn.
Output : The table AUX(r).
Method :
AUX[1] = ∅
for each i = 2, . . . , n do

AUX(r)[i] = ∅
for each j = 1, . . . , i− 1 do

compute match(ti, tj)
if AUX(r)[i] contains no super set ofmatch(ti, tj) then

AUX(r)[i] = AUX(r)[i] ∪match(ti, tj)
return AUX(r)

Figure 3. Computing the auxiliary table AUX(r)

Now, given a tabler and assuming that AUX(r) has been computed, the supports of
equivalence classes overr are computed through parallel scans ofr and AUX(r). The
corresponding algorithmscan is shown in Figure 4. At a given level of Algorithmscan,

we have a setC of candidate generic classes of the form〈X,Y, r〉 for which r contains
the tuplest1, . . . , tn. The goal of Algorithmscan is then to compute all frequent classes
associated with a generic class inC. To do so, for eachi = 1, . . . , n, the following actions
are performed, for every〈X,Y, r〉 in C :

1) If AUX (r)[i] contains a super schema ofX , thenti.X has been encountered for
somej < i. Thusti.X has already been processed for all classes with a projectionover
X . Otherwise,ti.X is encountered for the first time, and thus, has to be processed.

2) In the latter case, if AUX(r)[i] contains a super schema ofY then the query
q = πXσti.Y (r) has been processed previously. Two cases are then possible :

a) Eitherq is associated with〈X,Y, r〉, in which case its support is incremented.

b) Orq is not associated with〈X,Y, r〉, in which caseq is processed for the first time.
We check ifq can be pruned (see below), and if not, its support is initialized to1.

3) At this stage, all supports of all classes that have to be computed are known. All
classes whose support is greater than or equal tomin-supare put inLFreq(r) and the set
L of frequent generic classes for the next level is updated.

Regarding the pruning, we recall that some pruning is performed in Algorithmmine,
but for generic classes, whereas the pruning in Algorithmscan operates on classes. A
generic class〈X,Y, r〉 is pruned if at least one its predecessor generic classes (according
to �) contains no frequent classes. On the other hand, if〈X,Y, r〉 is not pruned, it might
happen thatπXσy(r) in 〈X,Y, r〉 can be pruned. This is checked in Algorithmscan as
mentioned in item 2(b) above, according to AlgorithmpruneQuery shown in Figure 5.

4. Experiments

We performed experiments on an Pentium Duo Core with 2Go mainmemory running
on Ubuntu Linux 2.6. The algorithm is written in Java using JDBC to communicate with
MySql. Datasets have been generated using our generator, based on the one by IBM.
The generated databases over star schemas, are denoted bydb-D-A-M -T whereD is
the number of dimensions,A is the number of attributes,M is the number of measure
attributes, andT is the number of tuples in the fact table. Figure 6 shows the runtimes of
FQF compared to those presented in [5] fordb-2-12-1-T , with T between50 and5000.

As shown in Figure 7, the time spent in mining the queries for the databasesdb-2-12-
1-T with T between1000 and100000 is very low compared to that for calculating the
auxiliary table. It is important to note that, in our experiments, we had no Out Of Memory
exceptions, as with the algorithm presented in [5] whenT exceeds 6000. Moreover, as
seen in Figure 8, the time spent for mining queries decreaseswhen the number of dimen-
sions increases. This is so because, given a number of attributes (12 in our case), when
T increases, more functional dependencies are available, and so, less classes are to be
considered. We also point out that if the number of tuples increases, the time spent for
mining queries is almost constant.

5. Conclusion and Further Work

We presented algorithms for mining frequent queries in database over a star schema,
and we showed that they outperform those proposed in [5]. Ourexperiments show that the
performance gap increases with the number of tuples, and that by using the AUX table,

Algorithm scan

Input : The setC of candidate generic classes, the table AUX(r), a given thresholdmin-sup.
Output : The setL of frequent generic classes inC, and the associated frequent classesLFreq(r).
Method :
L = ∅ ; LFreq(r) = ∅
for each 〈X,Y, r〉 ∈ C do

L(〈X,Y, r〉) = ∅
end for each

for each i = 1, . . . , n do //r contains tuplest1, . . . , tn
for each 〈X,Y, r〉 ∈ C do

if ∃ X ′ ∈ AUX(r)[i] such thatX ⊆ X ′ then

//ti.X has been encountered before, and thus has been counted
nothing to do

else //ti.X has not been encountered before, and thus must considered
if ∃ Y ′ ∈ AUX(r)[i] such thatY ⊆ Y ′ then

//ti.X must be counted for the support ofπXσti.Y (r)
if 〈X, t.Y, r〉 ∈ L(〈X,Y, r〉) then

//πXσti.Y (r) has already been encountered, thus update its support
sup(πXσti.Y (r)) = sup(πXσti.Y (r)) + 1

else //πXσti.Y (r) has not been encountered, thus prune or initialize its support
if not(pruneQuery(πXσti.Y (r))) then

sup(πXσti.Y (r)) = 1
L(〈X,Y, r〉) = L(〈X, Y, r〉) ∪ {πXσti.Y (r)}

for each 〈X,Y, r〉 ∈ C do

L(〈X,Y, r〉) = L(〈X,Y r〉)\ {πXσy(r) | sup(πXσy(r)) < min-sup}
if L(〈X,Y, r〉) 6= ∅ then

LFreq(r) = LFreq(r) ∪ L(〈X,Y, r〉)
L = L ∪ {〈X, Y, r〉}

return L and LFreq(r)

Figure 4. Scanning the table r

Algorithm pruneQuery

Input : A classq = πXσy(r).
Output : boolean.
Method :
if there existA ∈ Y and a∈ dom(A) such thatq = πXσy′(r) /∈ LFreq(r) andy = y′a then

return true ;
return false ;

Figure 5. Class Pruning

the time for mining queries become very low. Further work consists in processing further
tests and optimizing the computation of AUX table by an incremental approach. We also
plan to generalize our approach to database schemas other than star schemas.

Figure 6. Runtime Comparison.

Figure 7. Runtime over the number of
tuples in fact table.

Figure 8. Runtime over the number of di-
mensions (with 2000 tuples in fact table)

6. Bibliographie

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast discovery of associa-
tion rules. InAdvances in Knowledge Discovery and Data Mining. MIT Press, 1996.

[2] B. Goethals and J. V. den Bussche. Relational association rules : getting warmer. InESF Ex-
ploratory Workshop on Pattern Detection and Discovery in Data Mining, LNCS 2447. Springer-
Verlag, 2002.

[3] B. Goethals, W. L. Page, and H. Mannila. Mining association rules of simple conjunctive
queries. InSIAM, 2008.

[4] T. Jen, D. Laurent, and N. Spyratos. Mining all frequent selection-projection queries from a
relational table. InEDBT’08. ACM Press, 2008.

[5] T. Jen, D. Laurent, N. Spyratos. Mining Frequent Queriesin Relational Databases. InIDEAS.
ACM Press, 2009.

[6] J. Ullman.Principles of Databases and Knowledge-Base Systems. Comp. Sc. Press, 1988.

