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RESUME. Résumé: Dans ce papier nous nous intéressons a I'étude de la structure des graphes qui excluant Ko ,
comme mineur. Nous montrons que tout graphe sans mineur K2 4 admet deux sommets dont la suppression rend le
graphe planaire-extérieur. Ces sommets peuvent extraites en temps linéaire. Si le graphe est planaire, un sommet suffit a
le rendre planaire-extérieur. Une des conséquence de ce résultat est que les graphes sans mineur K> 4 sont de largeur
arborescente au plus 4, et au plus 3 pour le cas planaire. Ces bornes sont optimale a cause de K5 et de K4. Nous
mettons aussi en évidence la relation entre la taille de la grille de la plus petite grilles permettant de dessiner un graphe
H et le graphe excluant H comme mineur. Une conséquence de ce résultats est que la largeur arborescente des graphes
sans mineur K .. est O(y/r ) et r1/2+o(1) 'l exclue un graphe planair-exterieur a ~ sommets.

ABSTRACT. Abtract: This paper concerns the structure of the graphs excluding a Kz ,.-minor. We prove that every
K> 4-minor free graph contains two vertices whose removal leaves the graph outerplanar. Such vertices can be founded
in linear time. If the graph is planar the removal of one vertex suffices to leave the graph outerplanar. It follows that the
treewidth of K> 4-minor free graph is at most 4, and at most 3 for the planar case. These bounds are optimal because of
K5 and K4. We also establish a connection between the size of a poly-line grid drawing of a given planar graph H and
the treewidth of any planar H-minor free graph. A consequence is that the treewidth of planar K2 .-minor free graphs is
O(y/7), and r1/2+°(1) if one excludes any r-vertex outerplanar graph.

MOTS-CLES : Mots clefs: graphe sans mineur, largeur-arborescente, graphes planaires
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1. Introduction

Graph decomposition plays an important role in graph allgavic. Tree-decompositions, introduced
in [1] and rediscovered bg], is a very popular one. They are central in the Fixed Pararizetd Tractable
(FPT) Theory B] whose consequences for practical algorithms are efieatiprovements on the running
time [4, 5, 6]. Arbitrary graphs have no fine structure in general, howevaphs excluding some mindrs
have one.

One can say a lot about the structure if the excluded minanalsA graph excluding d&s-minor is a
forest, and a graph excludirig,-minor has treewidth at most two. Roughly speaking a tremehgposition
is a collection of subgraphs, called bags, that cover thphgia a tree-like manner (seé][for precise
definitions). Treewidth: graphs are graphs having a tree-decomposition into bagssmbstk + 1 ver-
tices. The structure of{s-minor free graphs, given by Wagne8][ can be expressed in term of tree-
decomposition into bags composed of either of planar graphsf V5-graphs, a cubic graph on eight
vertices. The treewidth of such graphs is unbounded in g&ner

Actually, Roberston and Seymoud][showed that every graph excluding a fixed middrhas a tree-
decomposition into bags almost-embeddable on a surfacehamhvid cannot be embedded. The above
results about graphs excludirfgs, K4, or K5 is therefore captured by this general result. However, the
exact structure cannot be derived since extremely largstants, depending of, are involved. In fact,
no upper bounds on these constants is known.

Nevertheless, such general tree-decompositions have tteathportant algorithmic applications.
Among them we just pointl[0] for additively approximating the chromatic number of agraand 1]
for shortest-path decomposition and its applications stedice oracles and routing schemes.

Determining the fine structure of minor free graphs becomaéshhmore complicated when the exclud-
ing graph has more than five vertices. The structur&piminor free graphs is still open for > 5, and
we refer to [L2] for a further discussions. Among simple open problems aliguminor free graphs, let
us mention the maximum arboricity (conjectured to3peand the Jgrgensen’s conjecture in relation with
the Hadwiger’s conjecture :

Conjecture 1 (Jgrgensen, 1994Fvery6-connectedss-minor free graphG has a vertex: such thatG \
{u} is planar.

1.1. Our Results

We show that everg-connectedi, 4-minor free graptG has two vertices, v such thaG \ {u, v} is
outerplanar. More precisely,

Theorem 1 In every2-connected graph with vertices, we can iil¥)(n) time either extract &<, 4-minor,
or find two vertices (one if the graph is planar) whose remd@aves the graph outerplanar.

We may naturally wonder whether Theordntan be extended t&5 , with » > 4. As we will see
in Section3, there arek, s-minor free graphs wit vertices, that are planar aeconnected, such that
the removal of at leas(n) vertices is required to make the graph outerplanar. [A RINGIOQ, SUF-
FICES ???] So the only way to extend this theorem 104 is to assume higher connectivity.

An immediate corollary of Theorerh is that K> 4-minor free graphs have treewidth at mdstand
at most3 if the graph is planar, and the corresponding tree-decoitiposan be constructed in linear
time. Indeed, &, 4-minor of a graphG’ must wholly appear in &-connected component 6f, and the
treewidth ofG is the maximum over the treewidth of i2ssconnected components. These two bounds are

1. A minor of a graph G is a subgraph of a graph obtained from G by edge contraction.



best possible because &f;, and of K4 for planar graphs. It improves the treewidth upper bound§ of
given by Bodlaender et allB], and Thilikos [L4] for the planar case.

The treewidth of planaf(, ,-minor free graphs is later discussed in SectoiVe prove a bound of
O(+/r), an asymptotically improvement upon thet 2 upper bound of 14]. Actually, we establish a
connection between the treewidth of&minor free graphs and the ability of poly-line gtidrawing of
H. More precisely, we show :

Theorem 2 The treewidth of every planar graph excluding a graph hadrmly-linep x ¢-grid drawing
isO(p*/2,/q).

Becausef(, , can be drawn on 8 x r grid (see Fig4), it follows that the treewidth of planai; .-
minor free graphs i© (/7). This later bound is asymptotically optimal because ofkhe £ grid that
has treewidth: and clearly exclude%(, ;». We derive similar bounds on the treewidth of planar graphs
excluding a tree of a given pathwidth or an outerplanar g(apk Sectiod).

1.2. Related Works

The study of graphs excluding a given graph as a minor has histgry. The structure of graphs
excluding a minor is known foK'; and K5 5 [8], the octahedron plus an edge and 3heube [L5, 16] if the
graph is enough connected. New characterizations of gretisding as a minor &5, or an octahedron
has been given irl[7]. The treewidth of graphs excluding as minor:aertex planar graph 22" [18],
and is conjectured to be+°(). It reduces ta)(r) for excluding (as minor) &, [13], a forest [L9] or a
cycle [20] on r vertices,0(r?) for excludingr disjoint triangles 21] or ar-prism® graph p2], andO(r?)
for excluding simultaneously a 2-row grid and a circus gfaj@8], see also24]. More specifically, the
treewidth of graphs excluding3ax 3-grid is at most which is optimal because dfg [25].

There are also works that study graphs containing fixed mirfamong them, 26] have showed that,
for every integerss, r, there is a numbeN (s,r) such that every2} (k + 1)-connected graph with at
least N (s, r) vertices contains &, ,-minors. Recently, several authors have announced thataagg
5-connected graph containgd ,-minor, and similar conditions forcing(s , and K, ,, minors.

The maximum density of &, ,-minor free graph has been determined by Chudnovsky, Regd an
Seymour R7]. More precisely, for every: > 1, the densesk’, .-minor free graph withn vertices has
#(n — 1)(r + 1) edges. The highest density &f, ,-minor free graphs is studied i2§|, but only partial
answers are known whenever- 2.

Motivated by routing problems, Bodlaender et dB][have studied the treewidth of graphs excluding a
K -minor. They show an upper boundf — 2, that reduces to + 2 if the graph is planarl4].

The problem of determining whethéf is a minor ofG is computationally difficult for generdll (e.g.
if H is a cycle offV(G)| vertices). However the problem is FPTAh There is a cubic time algorithm (for
fixed H), and a linear time algorithm iff = K5 of H is planar (cf. R9)). In particular this is linear for
H = K, and fixedr.

2. The Structure of Graphs Excluding K4

It is worth to say that the family ok, 4-minor free graphs includes non-planar graplis,and K5 3
are such examples. In order to prove Theorkme combine the following two intermediate results that
basically distinguish the planar and non-planar case.

2. A p x g-grid is a mesh of p rows and ¢ columns.

3. The product of a r-vertex cycle and a K». In particular, graphs with no 12-prism minor have treewidth at most 7262
and exclude a 4 x 4-grid, a huge improvement upon the 22077 upper bound for  x r-grid [18] which is 220:480 for r = 4.
4. A minor of a 3-row grid obtained by contracting the first row and removing all edges of the second row.



Lemmal If G is a planar2-connected graph, then in linear time we can either extremnfG a K> 4-
minor, or find a vertex whose removal leavgé®uterplanar.

Lemma 2 If G is a non-planar2-connected graph with vertices, then irD(n) time we can either extract
a Ky 4-minor, or find a vertex whose removal leavgplanar.

2.1. Preliminaries

Consider a plane gragh, that is an embedding of graghin the the plan&?. The connected subsets
of R?\ G are thefacesof (7, and each one, except the infinite one a.k.a. the outerfabepieomorphic to
an open disc. An embeddingasiterplaneif all the vertices lie on the border of the outerface.

For a pathM of G, we denote byM [u, v] the subpath of\/ going from vertexu to vertexv. We set
Mlu,v[= Mu,v]\ {v}, Mu,v] = M[u,v] \ {u}, and M]u,v[= M[u,v] \ {u,v}. Thelength|M| of
M is its number of edges. Notations extend to plane cycleslmsvi For a cycleC' of GG, we denote by
C[u,v] the path going clockwise from to v alongC, and we define similarly the varian€&™[u, v],
C*lu,v], andC*u, v|.

For a subgrapttl of G, denote by N(H) C R? the subseR? \ H where the outerface is excluded. If
H is a simple cycle, thenN(H) consists of one region (or face &f) whose border id7. By extension,
IN(H) denotes also the subgraph@finduced by the vertices that belong te(H ). An attachmenbf a
connected componet¥ of G \ H is a vertex ofH adjacent to a vertex of.

Whenever we extract a mind¢ from G, we actually construct modelof K defined as follows : with
each vertex, of K we associate auper-nodethat is a connected subgraph@f, and, with each edge
(u,v) of K we associate auper-edgea path connecting the super-nodesudb of v. Super-nodes are
pairwise disjoint and super-edges can only meet at theiersapde endpoints. F& = K, , we denote
by A andB the super-nodes of the two degregertices ofK ,.

2.2. Proof of Lemma 1 : Planar Case

An LMR-embeddingf a planar grapltz is a plane embedding @ with three distinguished paths,
namelyL, M, R (for left, middle, and right), sharing only their extrerasiand such that :

1) L U Ris the border of the outerface 6f;
2) IN(L U M) and IN(M U R) contain no vertices ;
3) IN(M U R) contains no edges with both endpointshif;
4) M has length at least two.
Properties 1 and 2 of LMR-embedding imply that the pdth8/, R span the vertices of the graph. See
Fig. 1(a) for an example.
Lemmal is proved thanks to the following two lemmas.

Lemma 3 Given an LMR-embedding @f, we can in linear time either extract A5 4-minor, or find a
vertex whose removal leavésouterplane.

Proof. Let u, v be the common vertices @f, M, R. Observe that, from the definition of LMR-embedding,
G\ R]u,v[is outerplane. In order to prove the lemma, we apply thewoiig rules whenever it is possible.

2.2.0.1. Rule1:

If IN(M U R) has no edge connecting a vertexdf and of R. Then, removingu makes the new
outerface bordering all the vertices bf. Since all the vertices af U R are on the border of the outerface,
the embedding~ \ {u} is outerplane.
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(a) (b)

Figure 1 — An LMR-embedding (a). &> 4-minor for the proof of Lemm&(b).
2.2.0.2. Rule 2:

If there is a vertexw of R such that all the edges ofil{M U R) incident to a vertex ofif are incident
to w. Then, removinguv makesG \ {w} outerplane.

2.2.0.3. Rule 3:

If there is a vertexv adjacent tau in M that is also adjacent to a vertexof R. Then, we construct a
new LMR-embedding and update M, R as follows :

— L becomed U R[u, z];

— M becomesV/ [v, w] U {wz} ; and

— R becomesR|x, v].

We apply also this construction, by exchanging the role ahdv, if there is a vertexv adjacent ta in
M that is also adjacent to a verteof R. Note that in both casefR| decreases by at least one vertex.

If none of the rules 1, 2, or 3 applies, théhcontains ak, 4 minor. Indeed, Rule 3 does not apply,
so vertexu has a neighbotv, in M without any neighbor inR. The same holds for vertex that has
a neighborw, in M without any neighbor ink. Because of Rule 1)/]w,, w,| contains at least a one
vertex which has a neighbor R. By Rule 2, all the edges from/ (and so fromM|w,,, w,[) to R are not
incident to the same vertex @. Thus, there are two different vertices andz,, in R with a neighbor in
M wy,, wy.

Therefore, we can constructg, 4-minor, by defining the super-nodés = M]w,,w,[ andB =
L[u,v], as shown on Figl(b)).

If we are not in the previous case where we have construciegd,aminor, then we must end by Rule 1
or Rule 2, and so find a vertex whose removal makes the emlgeddierplane.

To conclude, we observe that this can be done overall inditieee, by first applying while possible
Rule 3. This can be done by visiting a constant time each eflfeeagraph. Then, applying Rule 1 and
Rule 2 takes a linear time. O

Lemma 4 Every2-connected planar graph that is not a cycle has an LMR-eminggdr contains a5 4-
minor. Moreover, such an embedding or such a minor can betagisd in linear time.



Due to space contraint, the long and technical proof of Lerinas been removed.

Proof of Lemma 1. Clearly, if G is a cycle (that one can check in linear time), then the reinoivany
vertex leavegs outerplanar. IfG is planar but not a cycle, we can apply Lem#an linear time, we find
either an LMR-embedding faf, or extract ai’, 4-minor. If we have obtained an LMR-embedding e
we can apply Lemm@& and, in linear time, either find a vertex whose removal leavesuterplanar, or
extract ak» 4-minor. This completes the proof of the lemma. O

2.3. Proof of Lemma 2 : Non-Planar Case
In order to proof Lemma, we need of the following key lemma.

Lemma 5 Let H be a subdivision of(s 5 that is a subgraph of &-connected grapld-. The attachments
of any connected component@f\, H induced an edge dff, or one can find in linear time &’ 4-minor
inG.

Proof. The subgrapl#l is composed of two sets of degrgerertices denoted by and.J, and of nine paths
denoted byP[i, j] linking any vertexi € I to any vertexj € J.

Consider a connected componéniof G\ H, and letA be the set of its attachments. We first observe
that|A| > 1 otherwise the singletod would be a cut-vertex off : impossibleG is 2-connected.

So consider two attachmenisv € A. The remaining of the proof consists to show that endv are
at distance at least two iH, then one can find in linear timefg, 4-minor in G. Say in other words, i
is K 4-minor free, then the attachments¥fform exactly one edge of .

Let assume that € Pli,, j,] andv € Pli,, j,] for somei,, i, € I andj,,j, € J, and that, v are
at distance at least two iff. Among the four length$P|i,, ul|, | P[u, ju]l, | Pliv, v]|, and|P[v, j,]|, we
will assume thatP[i,, u]| is the smallest one. This can be done by possibly exchangsig fandv if the
minimum is attained by, and then by possibly exchangiiig andj’s if | P[i,, u]| > |Plu, j.]|. Two cases
occur :

2.3.04. Case 1:

Ty = 1y andju = Ju-

Both verticesu, v belong to the pattP = P[i,, j,]. Note also that going fror, to j, on P we must
encounter, beforev by minimality of | P|. We setA = P[i,,, u] andB = P]v, j,] for the two nodes of the
K, 4-minor. Betweern,, andj, in there are inf two disjoint paths of length at least two that uses none of
the edges of. The subpathP[u, v] is of length at least two since, v are at distance at least two H.
And finally, there is a fourth path of length at least two tlgbwomponenf’, completing the construction
of the K5 4-minor.

2.3.0.5. Case 2 :

Gy F Ty OF Joy 7 Jo-

We present the proof only fay, # i,, the proof is similar ifj,, # j,.

If v = j,, thenu = 4, by minimality of | P[i,,, u]|. In particular, both vertices, v belong to the path
Pliy, j,|, and we can conclude by Case 1. So we can assume that thetsitipat,] contains at least
one edge offf. Note also that the subpaf[u, j,] contains at least one edge as well by minimality of
| Pli, ]l

We setA = PJi,, u] andB = P][i,, v] for the degree-4 super-nodes of tig ,-minor. From the above
discussion, the subpattfyu, j,,] and P[v, j,| contains at one edge, and therefore contracirapndB in
H still result in a subdivision of(; 3, say H'. BetweenA andB in H' we have three disjoint paths of



length at least two, so i&v. These paths are disjoint of the fourth path through compioie which is of
length at least two too, completing the construction ofhe,-minor.
Clearly, from the above case analysis, fig,-minor can be extracted in linear time. O

Proof of Lemma 2. We need to show that eithéf, which is non-planar ang-connected, contains/ay 4-
minor, or contains a vertex, such thatG \ {vy} is planar. For that we will analyze a simple procedure
called AND(G) that either returns &5 4-minor or such a vertex,. An O(n) time implementation of this
procedure is given after the proof of its correctness.

2.3.0.6. Procedure FIND(G) :

1. If n < 5, then return asy any vertex ofG.
2. Construct &5 or K3 3 subdivisionH of G.
3. If H is a subdivision of5, then return &, 4-minor constructed front/ .
4. WhileV(H) £V (G) :
4a. Choose any connected compon&nof G \ H.
4b. Apply Lemmab to G and H. If a K5 4-minor is founded, return it. Otherwise replacefinthe edge

{u, v} induced by the attachments &f by a path fromu to v throughX..
5. Letv, be any degreé-vertex of H. If G \ {vo} is planar, returny.

6. Construct d; or K3 5 subdivisiond’ of G \ {vo}.
7. 1f H' is a subdivision ofK’5, then return &5 4-minor constructed frond?’.
8. Return thek, 4-minor constructed whenever applying LemBg G and H'.

2.3.0.7. Correctness.

If we end at Step 1, the@ \ {vo} has at most vertices, and thus is planar. So Step 1 is correct.

As G is not planar, from the Kuratowski's criterioB(, 31], G must contain a subgragtomeomorphic
to eitherks or K3 3, that is a subdivision of’5 or of K5 3. Such a subgrapH at Step 2 can be constructed
in O(n) time [32, 33). If H is a subdivision of; (Step 3), we first extend it to a proper subdivisiirof
Ks, i.e., a subdivisiord # K. AssumeH = K, otherwise we directly sel = H. Note thatG' # H
sincen > 5, soG \ H contains at least one vertex. SinGés 2-connected, there must exists two vertices
of H connected by a path i@ \ E(H). This path can be constructed by testing connectivity betwhe
10 pairs of vertices off. This path andd form a proper subdivisioi of K’5. Now we construct d; 4-
minor in H, i.e., a model, as follows. Let be the set of the five degree-4 verticeddr(corresponding to
vertices ofK5). SinceH is a proper subdivision ok 5, there exists, b € X connected inff by a pathP
of length at least two. We sét = {a} andB = {b}. In H, betweeru andb, there are3 paths, each one
through a distinct vertex ok \ {a, b}. These paths are of length at least two, pairwise disjoirtt,disjoint
from P too. PathP is the fourth one. This completes the construction of Alye,-minor, and proves the
correctness of Step 3. Clearly, the above construction eaiohe in time linear in the size éf, which is
O(n).

We are left with the case whet is a subdivision ofi(; ;3 in Step 4. We observe that, if we do not
end with aK, 4-minor at Step 4b, then the number of verticegbincreases by at least one (one edge is
replaced by a path of length at least two through It turns out that either we end at Step 4b and return a
K> 4-minor, or we are left at Step 5 with a spanning subgrapihich is a subdivision of(; 5.

LetG’ = G\ {vo}, wherey, is a degree-3 vertex df. Assume thaty’ is non-planar, i.e., we did not
end at Step 5. Step 6 and 7 are correct as they are the sameds&td 3 by replacing by H' (note
that H' # G). At Step 8 we can apply Lemnfato G and H' becausé- is 2-connected. We claim that the
application of this lemma returns/g, 4-minor of G.



Consider the connected componght of G\ H' containingvy. If we do not return &, 4-minor, then
the attachments, v of X, induced an edge ifiZ’. In particular{u, v} disconnects7 into X, > vy and
another component, sady, containing the other vertices @f’ (there are at least four such vertices). It
follows that{u, v} is avy-separator irG. However, inH, there is a path from, to Y. So{u,v} is not a
vg-separator i and thus not irG as well : a contradiction. So Step 8 is correct, completirmgpttoof of
the correctness of ProcedurenB (G).

2.3.0.8. An O(n) time algorithm.

Procedure D (G) cannot be directly used in order to get @n) time complexity algorithm, and
this for at least two reasons. First, the non-planar inpaplyt;’ may haven = Q(n?) edges. Secondly,
the while-loop (Step 4) may requif@(n) loops, each one requiring(m) time.

Using the bound of7], we know that ifG has more thaiin — 1)(r 4+ 1)/2 = 2.5n — O(1) edges, then
G must contain &, 4, minor. However, it does not imply that Procedurei&(G) returns such a minor.
This is due to the fact that this procedure could instead finergexv (of high degree) so that \ {v} is
planar, despité: has> 2.5n edges.

However, ifG has at leastn — 6 edges, then the application ofN® (G) necessarily returns A 4-
minor. This is becaus@\ {v}, for any vertex), cannot be planarG\ {v} contains atleastn—6—(n—1) =
3n — 5 edges. In other words, @& has too many edges, we can concentrate our attention to agyagi
of G with 4n — 6 edges, and apply on it a fast implementation oit~ The subgraph extraction can be
done inO(n) time by selecting itdn — 6 first edges. So we can safely assume thaasO(n) edges.

In the proof of the correctness ofND, we have seen that each steps, but Step 4, takes a lineastime,
O(n) time. In Step 4b, it take®(n) if a K» 4-minor is constructed. Otherwise, by theconnectivity of
G, a simple DFS from vertices a¥[X U {u, v}] will find out a path fromu to v in time proportional to
the length of the path. In other words, each edge is vigit€d) time, and so the while-loop has total cost
O(n). This completes the proof of Lemn2a O

3. On Generalizing Theorem 1

The Jgrgensen’s conjecture states that egezgnnectedi’s-minor free graph has a vertex whose re-
moval leaves the graph planar. The conjecture implies tlitger's conjecture for = 6, about(r — 1)-
colorability of K,.-minor free graphs. Actually, Robin Thomas proposed thiedohg generalization :

Conjecture 2 (R. Thomas) For eachr > 5, there is a constanf(r) such that ifG' is r-connected with at
leastg(r) vertices, then eithe€ has aK,.-minor or G has a setX of r — 5 vertices such tha’ \ X is
planar.

Note that the condition op(r) is required as there are graphs witkr+/log r - n) edges B4, ?] that
are K,.-minor free, and so that they cannot h&vén) edges like any planar graph by the removaOgf-)

vertices. Sgy(r) = Q(ry/logr).
In the light of our result, we propose the following conjeetu

Conjecture 3 For eachr > 2, there is a constanf(r) such that ifG is f(r)-connected, then eith&r has
a K5 -minor or G has a setX of r — 2 vertices such thaff \ X is outerplanar.

The condition on the minimum number of vertices is not reggiin this latter conjecture sinde, .-
minor free graphs have no more th@irn) edges 27]. We show (see35] for a proof) :

Proposition 1 Conjecture3 is true forr = 2, 3,4 and with f(2) = 0, and f(3) = f(4) = 2.



We have proved the first values offor Conjecture3 with f(3) = f(4) = 2. Note that if f(r) < 2,
then, for any value of > 3, the conjecture becomes wrong by considering, for insteanclain ofi, ;.
So, the valugf () given in Propositiorl is the lowest possible one for eacke {2, 3,4}.

We are unable to prove the conjectureifoe 5. However, if it is true, we must havg5) > 3 as shown
by the next result (se&§] for its proof).

Theorem 3 For every integerk > 0, there is a2-connectedK, s-minor free graph that requires the
removal of at leask vertices to leave the graph outerplanar. Moreover this drégpplanar and hadk + 4
vertices.

4. Treewidth of Minor Free Planar Graphs

Bounding the treewidth of a graph by a function of a minor itlexles is one of the most surprising
property of the Graph Minor Theory. In a seminal paper, Risoer et al. 18], have showed that the
treewidth of a graph is bounded if the graph excludes a firiéegy minor.

We investigate this question for planar graphs. It is know#] fhat the treewidth of a planar graph
excluding ar-vertex planar as a minor 3(r). This result is prove by combining the following two results

Lemma 6 ([18])

() If G is planar and excludes anx r-grid minor, then its treewidth is at most — 5.
(i) If H is ar-vertex planar graph, then it is a minor of(d4r — 24) x (14r — 24)-grid.

So, if a planar graplir excludes a planar grapti as minor, then by (ii)5 excludes d4r x 14r-grid,
and by (i) the treewidth of7 is < 84r. This bound cannot be asymptotically improved in generdhese
arer-vertex planar graphg/ that are not minor of the x r grid which has treewidth. For instance,
considerd = C, the pathwidth3 graph obtained from Cartesian product oK@ and ar-vertex path (it
can be drawn as nested triangles). However, there is hope to improved itmést bound if we restrict the
family of excluding minors.

More formally, we are looking for suitable graph familigsand functionst such that the treewidth
of every planar graph excluding anvertex graph minor off is at mostt(r). Note thatC, € F forces
t(r) =r.

We will determine a large familg for which¢(r) = O(+/r ), namely the family of all graphs having a
poly-line O(1) x r-grid drawing.

A graphH has a poly-line x ¢-grid drawing if H has a plane drawing such that vertices are plot at the
vertices of they x ¢ grid, and edges are contiguous sequences of segments eggmebrg being a straight-
line between two vertices of thex ¢ grid (see B€] for a wide overview). The drawing istraight-lineif
each edge consists of one segment only.

Due to space contraint, the proof of the next result is rem@see B5]).

Theorem 4 The treewidth of every planar graph excluding a graph hadrmly-linep x ¢-grid drawing
isO(p*/2,/q).

As depict on the above figuré, , has a straight-lin8 x r-grid drawing. Hence,



Corollary 1 The treewidth of every plandk ,.-minor free graphs i© (/).

It is maybe worth to mention that the family of graphs havingraight-linep x ¢-grid drawing is not
closed under minor taking, for eaph> 3 (see B7]), whereas the family of pathwidthgraphs is. In37],
it is also proved that the pathwidth is a lower bound on the lmemof rows in any grid drawing of a tree.
Connections between straight-line 3D-grid drawing anddi@raph Theory are giver3§].

The useful Theorem allow us the plug results from literature of Graph Drawinge®ty. Theoremi
applies in particular to-vertex trees. They have straight-litetlog, r) x r-grid drawing (cf. B6, 39]), and
more generally, trees of pathwidtthave straight-liné2k — 1) x r-grid drawings £0]. Recently, Biedl #1]
has showed that-vertex outerplanar graph has poly-liG&log r) x O(r)-grid drawing. Therefore,

Corollary 2 The treewidth of every plandi-minor free graph has treewidth :
—O(K*/2\/r) if H is anr-vertex tree of pathwidth ; and
—O(/rlog®?r) if H is anr-vertex outerplanar graph.
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